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a b s t r a c t 

A model-based traffic state estimation approach is developed for per-lane density esti- 

mation as well as on-ramp and off-ramp flows estimation for highways in presence of 

connected vehicles. Three are the basic ingredients of the developed estimation scheme: 

(1) a data-driven version of the conservation-of-vehicles equation (in its time- and space- 

discretized form); (2) the utilization of position and speed information from connected 

vehicles’ reports, as well as total flow measurements obtained from a minimum number 

(sufficient for the observability of the model) of fixed detectors, such as, for example, at 

the main entry and exit of a given highway stretch; and (3) the employment of a standard 

Kalman filter. Furthermore, necessary and sufficient conditions for the (strong) structural 

observability of the introduced model are established (properties, which are rarely studied 

in the literature on traffic estimation), which yield the fixed detectors requirements needed 

for the proper operation of the developed estimation scheme. The performance of the es- 

timation scheme is evaluated for various penetration rates of connected vehicles utilizing 

real microscopic traffic data collected within the Next Generation SIMulation (NGSIM) pro- 

gram. It is shown that the estimation performance is satisfactory, in terms of a suitable 

metric, even for low penetration rates of connected vehicles. The sensitivity of the estima- 

tion performance to variations of the model parameters (two in total) is also quantified, 

and it is shown that, overall, the estimation scheme is little sensitive to the model param- 

eters. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

1.1. Motivation 

Lane-specific highway traffic management has considerable potential in traffic flow optimization. As it is well-known

since the early 1990s ( Varaiya, 1993 ), the presence of connected and automated vehicles could play a key role in the ex-

ploitation of this potential ( Hall and Lotspeich, 1996; Hall and Caliskan, 1999; Li et al., 1997; Ramaswamy et al., 1997; Rao

and Varaiya, 1994 ). More specifically, significant throughput improvements may be achieved via appropriate real-time lane

assignment strategies. Prominent approaches are mandatory lane policies and lane advices, which can be achieved via lane-

changing control strategies, such as, for example, Baskar et al. (2012) ; Gueriau et al. (2015) ; Kim et al. (2008) ; Lee and
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Park (2010) ; Roncoli et al. (2016b , 2017 , 2015a , 2015b , 2016c ); Schakel and van Arem (2014) , or lane-dependent variable

speed limits ( Duret et al., 2012; Knoop et al., 2010; Zhang and Ioannou, 2017 ). The operation of lane-based highway traffic

control calls for real-time information reflecting the current traffic conditions per lane. 

1.2. Literature review 

The effectiveness of lane-based traffic management strategies largely depends on the quality and accuracy of traffic moni-

toring at a lane level. Numerous traffic state estimation methodologies exist, amply based on the presence of connected vehi-

cles, which, however, do not distinguish the density values among different lanes, such as, for example, Anand et al. (2014) ;

Bekiaris-Liberis et al. (2016) ; Deng et al. (2013) ; Duret and Yuan (2017) ; Fountoulakis et al. (2016) ; Herrera and Bayen (2010) ;

Khan et al. (2017) ; Qiu et al. (2010) ; Rempe et al. (2016) ; Roncoli et al. (2016a ); Schreiter et al. (2010) ; Seo et al. (2017) ;

Seo and Kusakabe (2015) ; Seo et al. (2015) ; Sun et al. (2017) ; van Hinsbergen et al. (2012) ; Wang et al. (2017) ;

Work et al. (2008) ; Wright and Horowitz (2016) ; Yuan et al. (2012) . The existing works dealing with the problem of traf-

fic state estimation per lane are rare and, in addition, they employ almost exclusively measurements coming from fixed

detectors ( Chang and Gazis, 1975; Coifman, 2003; Knapp, 1973; Singh and Li, 2012; Sheu, 1999 ); with the notable excep-

tion of ( Zhou and Mirchandani, 2015 ), where a somewhat heuristic, model-based approach is developed using Lagrangian

coordinates, in which measurements stemming from connected vehicles’ reports are utilized. It is worth highlighting that

in Zhou and Mirchandani (2015) the knowledge of a fundamental diagram is required, which is not needed in the present

paper. 

1.3. Contribution 

In this paper, we address the problem of per-lane density estimation as well as ramp flow estimation in highways, via the

development of a model-based estimation approach, which relies largely on the presence of connected vehicles. We denote

connected vehicles all vehicles that are capable of reporting information (i.e., position and speed) to an infrastructure-

based system, which may be achieved via different technologies and communication paradigms. A basic scenario may simply

consist of vehicles equipped with a GPS (Global Positioning System) and a system for mobile communication. However, more

complex scenarios, for example scenarios that incorporate communication among vehicles or between vehicles and roadside

units, are also possible. 

The basic ingredients of the developed estimation scheme are: (1) a data-driven version of the conservation-of-vehicles

equation (in its time- and space-discretized form); (2) the utilization of position and speed information from connected

vehicles’ reports, as well as total flow measurements obtained from a minimum number (sufficient for the observability of

the model) of fixed detectors, such as, for example, at the entry and exit of a given highway stretch; and (3) the employment

of a standard Kalman filter. 

In addition, we study the observability properties of the introduced model. Specifically, we provide sufficient and

necessary conditions for the structural observability as well as the strong structural observability, see, for example,

Hartung et al. (2012) ; Lin (1974) ; Liu et al. (2011 , 2013 ); Reissig et al. (2014) , of our model; it should be noted that ob-

servability properties are rarely studied in the literature on traffic estimation. As a result, we characterize the fixed detec-

tors configuration that guarantee the proper operation of the developed estimation scheme. The stability properties of the

estimator are also discussed. 

The performance of the estimation scheme is evaluated for various penetration rates of connected vehicles utilizing real

microscopic traffic data collected within the Next Generation SIMulation (NGSIM) program, see, for example, Montanino and

Punzo (2013a , 2013b ). It is shown that the estimation performance is satisfactory, in terms of a suitable metric, even for low

penetration rates of connected vehicles. The sensitivity of the estimation performance to variations of the model param-

eters (two in total) is also quantified and it is shown that, overall, the estimation scheme is little sensitive to the model

parameters. 

1.4. Organization 

In Section 2 the model for the density dynamics and the estimation scheme are introduced. In Section 3 the structural

observability properties of the developed model are studied and the stability properties of the estimator are discussed. In

Section 4 the performance of the estimation scheme is validated via the employment of NGSIM data. 

1.5. Notation and definitions 

a) Notation. We adopt the notation from ( Reissig et al., 2014 ) (see also, e.g., Lin, 1974; Liu et al., 2013 ): 

• A structured matrix A , i.e., a matrix with certain elements being either fixed zeros or free nonzero parameters, is

called a pattern. We say that a matrix A is of pattern A if the structure of its zero and nonzero elements is the same

with A for all times. 
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• The graph G ( A , C ) , where A and C are of dimension n × n and r × n , respectively, has vertices { 1 , . . . , n + r } and there

is a (directed) edge from the vertex x to the vertex w if the element ( w, x ) of ( A , C ) is a nonzero parameter. In

this case, x is a predecessor of w , and w is a successor of x . For any set V of vertices, Pre( V ) denotes the set of

predecessors of V , namely, the set of all vertices with a directed edge to some vertex in V . The set Post( V ) denotes

the set of successors of V , namely, the set of all vertices with a directed edge from some vertex of V . 
• Vertices { 1 , . . . , n } represent the states of the underlined dynamical system and are called “state” vertices, whereas

vertices { n, . . . , n + r } r epr esent those specific states for which noisy measurements are available, and are called “out-

put” vertices. 
• A vertex is called non-accessible if there exists no path (i.e., a sequence of directed edges connecting certain distinct

vertices) from any output vertex to that vertex. A graph is said to contain a dilation if there exists a set V of state

vertices such that the cardinality of the set Pre( V ) is strictly smaller than the cardinality of the set V . 

b) Definitions. Consider a linear discrete-time system of the form 

x (k + 1) = A (k ) x (k ) + B (k ) u (k ) (1)

y (k ) = C(k ) x (k ) + D (k ) u (k ) , (2)

where x ∈ R 

n is state, u ∈ R 

M is input, y ∈ R 

r is output, and k = 0 , 1 , . . . is the discrete time. We adopt the following defini-

tions, see, e.g., Antsaklis and Michel (2006) ; Liu et al. (2013) ; Reissig et al. (2014) : 

• The pair of matrices ( A, C ) is called observable on [ k 0 , k 0 + M 

∗] if and only if for all initial conditions

x (k 0 ) ∈ R 

n and for all inputs u : [ k 0 , k 0 + M 

∗] → R 

r , one can uniquely determine x ( k 0 ) from the information

{ ( u (k ) , y (k ) ) | k ∈ [ k 0 , k 0 + M 

∗] } . 
We assume now that matrices A and C are of pattern A and C, respectively. 

• The system is strongly structurally observable if for any numerical realization of the structured matrices A and C, the

corresponding systems are observable in the sense of the formal definition above. 
• The system is (weakly) structurally observable if there exist numerical realizations of the structured matrices A and

C, such that the corresponding systems are observable in the sense of the formal definition above. 

The conditions that must be satisfied for strong or (weak) structural observability are provided in the Appendix for the

convenience of the reader. 

2. Per lane traffic density estimation using a data-driven model 

2.1. General set-Up 

We consider highway stretches consisting of M lanes, indexed by j = 1 , . . . , M, subdivided into N segments, indexed by

i = 1 , . . . , N. We define a cell ( i, j ) to be the highway part that corresponds to lane j of segment i . The length of each segment

is denoted by �i , i = 1 , . . . , N. 

The following variables are repeatedly used in the paper: 

• Average speed 

[
km 

h 

]
of vehicles in cell ( i, j ), denoted by v i, j , for i = 1 , . . . , N and j = 1 , . . . , M. 

• Total traffic density 
[

veh 
km 

]
at cell ( i, j ), denoted by ρ i, j , for i = 1 , . . . , N and j = 1 , . . . , M. 

• Total longitudinal inflow 

[
veh 

h 

]
of cell (i + 1 , j) , denoted by q i, j , for i = 0 , . . . , N − 1 and j = 1 , . . . , M. 

• Total on-ramp flow 

[
veh 

h 

]
entering at cell ( i, j ), denoted by r i, j , for i = 1 , . . . , N and j = 1 , . . . , M. 

• Total off-ramp flow 

[
veh 

h 

]
exiting from cell ( i, j ), denoted by s i, j , for i = 1 , . . . , N and j = 1 , . . . , M. 

• Total lateral flow 

[
veh 

h 

]
at segment i that enters lane j 2 from lane j 1 , denoted by L i, j 1 → j 2 

, for i = 1 , . . . , N, j 1 = 1 , . . . , M,

and j 2 = j 1 ± 1 . 

2.2. Available information from connected Vehicles’ reports 

The data-driven model, which is presented in the next subsection, requires the availability of the following measure-

ments: 

• Average speed of connected vehicles at cell ( i, j ), denoted by v c 
i, j 

, for i = 1 , . . . , N and j = 1 , . . . , M. 

• Density of connected vehicles at cell ( i, j ), denoted by ρc 
i, j 

, for i = 1 , . . . , N and j = 1 , . . . , M. 

• Lateral flow of connected vehicles at segment i that enters lane j 2 from lane j 1 , denoted by L c 
i, j 1 → j 2 

, for i = 1 , . . . , N,

j 1 = 1 , . . . , M, and j 2 = j 1 ± 1 . 

Notice that average speeds, densities, and lateral flows of connected vehicles may be obtained based on position and

speed reports (see also Section 4.1 ). 
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Fig. 1. Model of the exiting longitudinal flow from cell ( i, j ) as described in (4) . It consists of a well-established term of the form ρ i, j v i, j , to the contribution 

of the cell density, and of additional terms, which are multiplied by a certain percentage p , due to the contribution of “diagonal” lateral flows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Model description for the density dynamics 

The conservation equation yields the following model for the density dynamics in each cell ( i, j ) 

ρi, j (k + 1) = ρi, j (k ) + 

T 

�i 

(
q i −1 , j (k ) − q i, j (k ) + L i, j−1 → j (k ) + L i, j+1 → j (k ) 

−L i, j → j −1 (k ) − L i, j → j +1 (k ) + r i, j (k ) − s i, j (k ) 
)
, (3) 

where T denotes the time discretization step. For convenience 1 , we assume r i, j ≡ s i, j ≡ 0 for all i and 1 ≤ j ≤ M − 1 , where M

denotes the right-most lane (assuming right-hand traffic); also, we have L i, j 1 → j 2 
≡ 0 if either j 1 or j 2 equals zero or M + 1 .

We note that the inflows at the entry of the highway, namely, q 0, j , for all j = 1 , . . . , M, are treated as measured inputs to

system (3) . 

We employ the following relation for the total flows (see Fig. 1 ) 

q i, j (k ) = v i, j (k ) ρi, j (k ) + p i, j L i, j−1 → j (k ) + p i, j L i, j+1 → j (k ) + p̄ i, j r i, j (k ) , 

for i = 1 , . . . , N and j = 1 , . . . , M , (4) 

where p i, j ∈ [0, 1], p̄ i, j ∈ [0 , 1] , for i = 1 , . . . , N and j = 1 , . . . , M, are real numbers that indicate the percentages of “diagonal”

lateral movements, including the lateral flows from an on-ramp “lane”, for each specific cell. While the choice of the first

term in (4) is well-known (see, e.g., Papageorgiou and Messmer, 1990 ), the motivation for the choice of the rest three terms

in (4) is less obvious. This choice is guided from the fact that at locations where strong lateral flows are observed, such

as, for example, at cells where an on-ramp is located or at segments that feature lane-drops, a significant amount of the

lateral flow may appear close to the end of those cells (e.g., in the former case, where the acceleration lane ends). As a

result, the flow modeling may be more accurately described when considering that a percentage of lateral and on-ramp

flows actually acts as additional exiting longitudinal flow. This conclusion is confirmed by the estimation results obtained

using NGSIM data, in which we observe that an estimation bias may appear if all p i, j and p̄ i, j values are set to zero. In fact,

this formulation is also employed in other works, see, e.g., Laval and Daganzo (2006) . 

The percentages p i, j and p̄ i, j are viewed as tuning parameters. In the most general case, these percentages may be

different to each other. For example, one may expect that two percentages p̄ i, j that correspond to two respective on-ramps

with different acceleration lane lengths are different to each other. However, it was observed in the testing with NGSIM

data in Section 4 , that the estimation performance is not really affected if the percentage values are chosen equal to zero

for all segments, except those featuring strong lateral flows, such as segments with on-ramps or lane drops. This significantly

reduces the number of the parameters that need to be specified 

2 . 

For the lateral flows, we employ the following relation 

L i, j 1 → j 2 (k ) = 

L c 
i, j 1 → j 2 

(k ) 

ρc 
i, j 1 

(k ) 
ρi, j 1 (k ) , for i = 1 , . . . , N, j 1 = 1 , . . . , M, and j 2 = j 1 ± 1 . (5) 

Eq. (5) is based on the reasonable assumption that the proportion of lane-changing connected vehicles is equal to the

proportion of all lane-changing vehicles. We consider this as a reasonable assumption also for various scenarios that include
1 Although, for convenience we assume that there are no on-ramps or off-ramps on the left-most lane, the model could be easily adapted to incorporate 

such cases (which are, however, not common in practice). Moreover, the model could be also easily adapted to incorporate the case where the number of 

lanes is not the same for all segments, as is the case, for example, when there are lane-drops or lane-gains. 
2 For instance, in the testing with NGSIM data, only one percentage value is needed to be non-zero (and thus, to be tuned), namely, the value that 

corresponds to the cell where an on-ramp is located. 
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automated (and controlled) vehicles. In fact, in case there is no strict infrastructure-based need for lane changing, we ex-

pect rather low lane-changing flows, and, in fact, we could even utterly ignore lane changing and still obtain reasonable

estimation results (see Section 4 ). For this reason, it is not of crucial importance to measure accurately and account for

this (very low) proportion. On the other hand, in case there is a strict infrastructure-based need for lane changing (such

as, for example, near ramps or a lane-drop), then we may have stronger lateral flows that need to be measured. In such

a case, despite automated vehicles may have a different microscopic lane-changing behavior, they have not much of other

choice than to change lane; these lane-changes may happen slightly earlier or later than for manual vehicles, but roughly

in proportions which are similar to what manual vehicles also need to perform. Therefore, despite this assumption may not

be always exactly valid, we expect that at macroscopic level this may produce only a local bias in the lateral flows, which

does not affect significantly the resulting traffic estimates. Furthermore, in case one would observe that this bias produces

unacceptable deterioration of the estimation performance, the proposed methodology may be extended to account explicitly

for the bias, via definition of a modified model (5) for lateral flows. 

This allows one to quantify the total lateral movements from a cell using (5) , namely by scaling the lateral movements of

connected vehicles with the inverse of the percentage of connected vehicles in that cell. The accuracy of formulation (5) is

tested in the estimation results of Section 4 . Note that, for analysis, the densities of connected vehicles are assumed to be

strictly positive, whereas, in practice, the problem of the possible division, in relation (5) with zero at some time instants,

may be resolved by employing a heuristic procedure (see Section 4.1 ). 

Plugging (4), (5) into (3) , we re-write the total density dynamics for all ( i, j ) as 

ρi, j (k + 1) = 

(
1 − T 

�i 

v i, j (k ) − T 

�i 

L c 
i, j → j −1 

(k ) 

ρc 
i, j 

(k ) 
− T 

�i 

L c 
i, j → j +1 

(k ) 

ρc 
i, j 

(k ) 

)
ρi, j (k ) + 

T 

�i 

v i −1 , j (k ) ρi −1 , j (k ) 

+(1 − p i, j ) 
T 

�i 

L c 
i, j−1 → j 

(k ) 

ρc 
i, j−1 

(k ) 
ρi, j−1 (k ) + (1 − p i, j ) 

T 

�i 

L c 
i, j+1 → j 

(k ) 

ρc 
i, j+1 

(k ) 
ρi, j+1 (k ) 

+ p i −1 , j 

T 

�i 

L c 
i −1 , j−1 → j 

(k ) 

ρc 
i −1 , j−1 

(k ) 
ρi −1 , j−1 (k ) + p i −1 , j 

T 

�i 

L c 
i −1 , j+1 → j 

(k ) 

ρc 
i −1 , j+1 

(k ) 
ρi −1 , j+1 (k ) 

+(1 − p̄ i, j ) 
T 

�i 

r i, j (k ) + p̄ i −1 , j 

T 

�i 

r i −1 , j (k ) − T 

�i 

s i, j (k ) , (6)

where, according to the conventions adopted in Section 2.3 , for all i and j = 1 , the terms 
L c 

i, j → j −1 
(k ) 

ρc 
i, j 

(k ) 
ρi, j (k ) , 

L c 
i, j−1 → j 

(k ) 

ρc 
i, j−1 

(k ) 
ρi, j−1 (k ) ,

and 

L c 
i −1 , j−1 → j 

(k ) 

ρc 
i −1 , j−1 

(k ) 
ρi −1 , j−1 (k ) should be set to zero; for all i and j = M, the terms 

L c 
i, j → j +1 

(k ) 

ρc 
i, j 

(k ) 
ρi, j (k ) , 

L c 
i, j+1 → j 

(k ) 

ρc 
i, j+1 

(k ) 
ρi, j+1 (k ) , and

L c 
i −1 , j+1 → j 

(k ) 

ρc 
i −1 , j+1 

(k ) 
ρi −1 , j+1 (k ) should be set to zero; and for all j and i = 1 , the terms 

L c 
i −1 , j−1 → j 

(k ) 

ρc 
i −1 , j−1 

(k ) 
ρi −1 , j−1 (k ) , 

L c 
i −1 , j+1 → j 

(k ) 

ρc 
i −1 , j+1 

(k ) 
ρi −1 , j+1 (k ) ,

and r i −1 , j (k ) should be set to zero. 

To enable also the estimation of unmeasured on-ramp and off-ramp flows within the highway stretch, we will adopt, as

usual in absence of a descriptive dynamic model, a random walk for the quantities to be estimated. The deterministic parts

of such models (to be eventually augmented with additive zero-mean, white Gaussian noise) for on-ramp and off-ramp flow

estimation, respectively, read 

r i,M 

(k + 1) = r i,M 

(k ) (7)

s i,M 

(k + 1) = s i,M 

(k ) . (8)

We write next compactly the overall system (6) –(8) . For this, we define first the vector x as follows 

x = ( ρ1 , 1 , · · · , ρN, 1 , · · · , ρ1 ,M 

· · · , ρN,M 

, r 1 ,M 

, · · · , r N,M 

, s 1 ,M 

, · · · , s N,M 

) 
T 
. (9)

The average speed of connected vehicles is representative of the average cell speed, as motivated in Bekiaris-

Liberis et al. (2016) and justified with real data and in microscopic simulation in Roncoli et al. (2016a ) and

Fountoulakis et al. (2016) , respectively, even for connected-vehicle penetrations as low as 2%. Thus the unmeasured cell

speeds v i, j may be replaced by the corresponding measured speeds v c 
i, j 

; and, using (9) , we re-write (6) –(8) in a compact

form as 

x (k + 1) = A ( v c (k ) , L c (k ) , ρc (k ) ) x (k ) + Bu (k ) , (10)

where v c , L c , and ρc denote vectors that incorporate all average cell speeds of connected vehicles v c 
i, j 

, lateral flows of con-

nected vehicles L c 
i, j 1 → j 2 

, and densities of connected vehicles ρc 
i, j 

, respectively, while u denotes the vector of inflows at the

highway entrance, namely, u = 

(
q 0 , 1 , · · · , q 0 ,M 

)T 
, A ∈ R 

(N ×M+2 N ) ×(N ×M+2 N ) , and B ∈ R 

(N ×M+2 N ) ×M . 

Together with (10) we associate an output vector y , which holds all mainstream total flows that are measured by corre-

sponding mainstream fixed detectors and, as follows from (4), (5) , is given by 

y (k ) = C ( v c (k ) , L c (k ) , ρc (k ) ) x (k ) , (11)
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where C ∈ R 

(M+ l r + l s −1) ×(N ×M+2 N ) , with l r and l s being the number of on-ramps and off-ramps, respectively. The minimum

number of rows of C equals M + l r + l s − 1 in order for system (10), (11) to be observable (see Section 3 ), which is true when

the total flows at the last segment of every lane as well as the total flows of lane M at every segment that is anywhere

between two consecutive unmeasured ramps, are measured. Yet, any additional available mainstream measurement could 

be incorporated in (11) in order to improve the estimation performance. Note that we assume 2 N ramp flows. In the case

where there are less on-ramp or off-ramp flows, the dimension of the matrices A, B , and C are reduced accordingly. 

The total flow measurements may be replaced by corresponding density measurements when, for instance, occupancy

detectors are available instead of flow detectors and are used to deduce corresponding density values. In this case, the

corresponding entries of the C matrix in (11) would simply be equal to one. Moreover, when there are both speed and flow

detectors in a cell, the entries of the C matrix that correspond to average cell speeds obtained from connected vehicles’

reports may be replaced by the total average speed measured by the detector. 

2.4. Per lane total density estimation employing a Kalman filter 

We employ next a standard Kalman filter ( Anderson and Moore, 1979 ) along the lines of ( Bekiaris-Liberis et al., 2016 )

(see also Fountoulakis et al., 2016; Roncoli et al., 2016a ). The estimation equations are given by 

ˆ x (k + 1) = A ( v c (k ) , L c (k ) , ρc (k ) ) ̂ x (k ) + Bu (k ) 

+ A ( v c (k ) , L c (k ) , ρc (k ) ) K(k ) 
(
z(k ) − C ( v c (k ) , L c (k ) , ρc (k ) ) ̂ x (k ) 

)
(12) 

K(k ) = P (k ) C ( v c (k ) , L c (k ) , ρc (k ) ) 
T 

×
(
C ( v c (k ) , L c (k ) , ρc (k ) ) P (k ) C ( v c (k ) , L c (k ) , ρc (k ) ) 

T + R 

)−1 
(13) 

P (k + 1) = A ( v c (k ) , L c (k ) , ρc (k ) ) ( I − K(k ) C ( v c (k ) , L c (k ) , ρc (k ) ) ) 

× P (k ) A ( v c (k ) , L c (k ) , ρc (k ) ) 
T + Q, (14) 

where ˆ x denotes the estimate of vector x defined in (10) , z is a noisy version of the measurement y defined in (11) , R = R T >

0 , Q = Q 

T > 0 , and P (k 0 ) = P (k 0 ) 
T > 0 . Note that, in the ideal case in which there is additive, zero-mean Gaussian white

noise in Eqs. (10) and (11) , respectively, R and Q represent the (ideally known) covariance matrices of the measurement and

process noise, respectively. In the ideal case in which x ( k 0 ) is a Gaussian random variable, the initial conditions of the filter

(12) –(14) , namely, ˆ x (k 0 ) and P ( k 0 ) represent the mean and auto covariance matrix of x ( k 0 ), respectively. More details on

the meaning of each of the tuning parameter ˆ x (k 0 ) , P (k 0 ) , Q , and R can be found in Anderson and Moore (1979) ; Bekiaris-

Liberis et al. (2016) . 

In summary, in order to run the estimation scheme (12) –(14) the following measurements are needed (see also

Section 3 for more details): 

• Total flows exiting from the last cell of every lane, which are the M elements of the output vector y as well as total

flows entering into the first segment of every lane, which are comprised in the input vector u . 
• Total exiting flows of lane M at every cell that is anywhere between two consecutive unmeasured ramps, which are

the l r + l s − 1 elements of the output vector y . 
• Speeds, lateral flows, and densities of connected vehicles, which are comprised in the vectors v c , L c , and ρc , respec-

tively, and may be obtained by speed and position reports stemming from connected vehicles. 

3. Observability of the model and stability of the estimation scheme 

3.1. Observability: Physical implications 

For the benefit of readers that may not be familiar with the concept of observability, we provide next some physically

oriented implications of the formal definitions of Section 1.5 (see, e.g., Antsaklis and Michel, 2006; Liu et al., 2013 ). 

In less rigorous terms, the observability property of a system guarantees that the dynamic evolution of its internal states

(i.e., the states that are not directly measured) may be extracted (observed) by measuring only some specific states (or, more

generally, some outputs of the system). Thus, the study of observability of a system is useful since it provides the necessary

sensor requirements, which guarantee that all internal sates may be reconstructed by measuring only certain outputs. For

example, in a traffic system, studying the observability for a given highway stretch one can derive the locations at which the

mainstream fixed flow detectors should be placed, in order to guarantee that the densities in all cells may be reconstructed

by measuring the flow only at these particular locations. In particular, as far as real-time traffic state estimation is concerned,

observability is a property that guarantees that the state of system (10), (11) , i.e., all cell densities, can be reproduced, in

real time in an unbiased way from the available measurements by use of the Kalman filter (12) –(14) . 
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3.2. The concept of structural observability 

Observability of a system is usually studied employing certain algebraic conditions, see, e.g., Antsaklis and

Michel (2006) (see also paragraphs d )–f ) in the Appendix). However, for systems with a very large number of states or

very large output matrices or for time-varying systems (as in our case) it is difficult to formally check these conditions. For

this reason, as an alternative, graph-theoretic approaches are adopted, which study the observability properties of a system

by merely looking into its structure, see, e.g., Hartung et al. (2012) ; Lin (1974) ; Liu et al. (2011 , 2013 ); Reissig et al. (2014) .

In addition, the study of the structural observability properties of a system is useful in that one can determine under which

measurement configurations a system is observable, by investigating the structure of the zero and non-zero elements of the

A and C matrices. Depending on which specific notion is adopted, structural observability may be a sufficient or necessary

condition for observability (see paragraphs a) and b) below and the definitions in Section 1.5 ). 

Here we focus on two different notions of structural observability, namely the strong structural observability and the

( weak ) 3 structural observability whose (informal) definitions can be found in Section 1.5 . We provide next some of the

implications of the two structural observability properties on observability, and consequently, on traffic state estimation. 

c) Strong Structural Observability. The strong structural observability property guarantees that “no matter what” values the

non-zero system matrix elements may take, the system remains observable. Thus, clearly, strong structural observability is

sufficient for observability. 

d) (Weak) Structural Observability. Is a neccasary condition for observability. The (weak) structural observability concept,

in fact, provides a physically intuitive way to the study of observability which, in practice , typically implies indeed system

observability. The reason is that the loss of observability of a (weakly) structurally observable system may happen only in

some “pathological” cases when the elements of the A and C matrices accidentally happen to satisfy some specific condi-

tions, see, e.g., Lin (1974) ; Liu et al. (2013) ; Reissig et al. (2014) . Thus, in practice, as it is also suggested from the estimation

results in Section 4 , (weak) structural observability implies in the rule the proper operation of an estimation scheme as

the one presented here. It should be also noted that, since (weak) structural observability is a weaker property than strong

structural observability, one may expect that a smaller number of sensors may be required to guarantee (weak) structural

observability than strong structural observability. 

3.3. Structural assumptions for the considered traffic models 

We consider systems of the form (10), (11) with the patterns A and C under the assumptions that for all ( i, j ) it holds

that 

v c i, j (k ) � = 0 , for all k ≥ 0 (15)

1 − T 

�i 

v c i, j (k ) − T 

�i 

L c 
i, j → j −1 

(k ) 

ρc 
i, j 

(k ) 
− T 

�i 

L c 
i, j → j +1 

(k ) 

ρc 
i, j 

(k ) 
� = 0 , for all k ≥ 0 . (16)

Both conditions (15), (16) are satisfied when for all ( i, j ) it holds that 

0 < v c i, j (k ) < 

�i 

T 
−

L c 
i, j → j −1 

(k ) 

ρc 
i, j 

(k ) 
−

L c 
i, j → j +1 

(k ) 

ρc 
i, j 

(k ) 
, for all k ≥ 0 . (17)

The right-hand side of inequality (17) , in the case of zero lateral flows of connected vehicles (e.g., in the case of one-lane

highway), is satisfied when the traffic model respects the so-called Courant-Friedrichs-Lewy (CFL) condition ( Courant et al.,

1928 ) (which must anyhow hold for stable discrete traffic flow models). The left-hand side of inequality (17) is satisfied

when at least one connected vehicle is not completely stopped within a cell. In practice, the satisfaction of this requirement

may be handled via opportune heuristic rules, such as, for example, the utilization of a moving average of a certain number

of past, non-zero speed values (see also Section 4 ). 

3.4. Traffic models under study 

In the following structural observability study we consider subsequently the following four basic models derived from

the general model (10), (11) ; each sub-model turns out to have different structural observability properties: 

I. One-lane highway stretch with N segments ( ≡ cells), where all percentage values p̄ i, j for diagonal on-ramp 

4 flows

are set to zero (which is equivalent to the non-lane-based estimation scheme for a highway stretch considered in

Bekiaris-Liberis et al. (2016) ). 
3 Note that, in the literature, the weak structural observability property comes usually under the name “structural observability”. However, here, we use 

the name “(weak) structural observability” so no confusion arises. 
4 Note that for simplicity of presentation we consider the case in which all unmeasured ramps are on-ramps. The same arguments apply in the case 

where there are unmeasured off-ramps as well since the off-ramp flow dynamics are identical to the on-ramp flow dynamics. 
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Fig. 2. The graph G 
(
A 

T , C T 
)

for patterns A and C that include matrices A and C , respectively, of system (10), (11) , for the case of a simple one-lane highway 

stretch with N segments (Model I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. General three-lane highway stretch 

5 where all percentage values p i, j and p̄ i, j are set equal to zero, for both diagonal

lateral and on-ramp flows, whereas the lateral flows of connected vehicles may or may not be zero. 

III. General three-lane highway stretch. 

IV. One-lane highway stretch where the percentage values p̄ i, j for diagonal on-ramp flows may be non-zero. 

In the study of (weak) structural observability we consider in addition the following two models: 

V. Model I where matrix A is replaced by 1 
T ( A − I ) , which can be viewed as an approximation of the continuous-time

version of Model I (where the time derivative is approximated by a forward finite difference formula). 

VI. Model III where matrix A is replaced by 1 
T ( A − I ) , which can be viewed as an approximation of the continuous-time

version of Model III (where the time derivative is approximated by a forward finite difference formula). 

The motivation for studying these additional models will be explained later (see Section 3.6 ). 

Note that, as it is already mentioned in Section 2 , the inflows at the main entry of each lane of the considered highway

stretch are modeled as arbitrary, but measured, inputs. Consequently, in the subsequent structural observability studies, it

is tacitly presumed that at the main entry of each lane of the considered highway stretch there is a fixed flow detector.

Yet, all the specific models and the following observability analysis could be adapted to the case where some inflows are

not directly measured. For example, one could model the unmeasured inflows with random walk equations, which could

be treated similarly to unmeasured on-ramp flows that are considered in the following subsections. Finally, for simplicity of

presentation we consider the case in which none of the on-ramp flows is directly measured. 

3.5. Strong structural observability of lane-Based highway traffic 

We establish the following claims for each of the models I, II, III, and IV: 

1. Model I is strongly structurally observable if and only if : i) total flow fixed detectors are placed at the main exit of

the considered highway stretch; and ii) total flow fixed detectors are placed at every segment immediately upstream

of a segment with an on-ramp 

6 . 

2. Model II is strongly structurally observable if and only if: i) total flow fixed detectors are placed at the main exit in

each lane of the considered highway stretch; and ii) total flow fixed detectors are placed at every segment immedi-

ately upstream of a segment with an on-ramp. 

3. Model III is not strongly structurally observable under the measurement configuration i) and ii) of Claim 2. 

4. Model IV is not strongly structurally observable under the measurement configuration i) and ii) of Claim 1. 

In order to establish Claims 1–4 we employ the results from Reissig et al. (2014) under the structural assumptions of

Section 3.3 . 

e) Claim 1. We start by constructing the graph G 
(
A 

T , C T 
)
, shown in Fig. 2 , for Model I. Employing Corollary IV.2 from

Reissig et al. (2014) (see also Hartung et al., 2012 ), it follows that the highway stretch with one lane is strongly structurally

observable on [ k 0 , k 0 + N + m ] , for any k 0 ≥ 0, where m denotes the total number of on-ramps (hence, that every system of

pattern ( A , C ) is observable on [ k 0 , k 0 + N + m ] ) if and only if condition G 0 ∩ G 1 is satisfied. For the reader’s convenience,

conditions G 0 and G 1 can be found in the Appendix. 

A sufficient requirement for condition G 0 to be satisfied is that the total flow at the exit of the considered highway

stretch is measured, or, more generally, that there is an output vertex y 1 as shown in Fig. 2 . To see this, first observe from

Fig. 2 that for every subset S ⊆ { ρ1 , . . . , ρN } it holds that S ∩ Post 
({

ρ j+1 

})
= 

{
ρ j 

}
, where ρ j corresponds to the vertex with
5 For simplicity of presentation we consider specifically a three-lane highway stretch. 
6 This may also be proved (as far as the sufficiency part is concerned) as in Bekiaris-Liberis et al. (2016) employing an algebraic approach and utilizing 

the classical definition of observability. 



N. Bekiaris-Liberis et al. / Transportation Research Part B 106 (2017) 1–28 9 

Fig. 3. The graph G 
(
A 

T , C T 
)

for patterns A and C that include matrices A and C , respectively, of system (10), (11) , for the case of a three-lane highway 

stretch with p̄ i, j = p i, j = 0 , for all i and j , when the lateral flows of connected vehicles may be nonzero (Model II). 
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the maximum index that belongs to S with ρ j ≡ y 1 when j = N + 1 . Moreover, for every such subset S that also includes

vertices of the form r i , it holds that S ∩ Post ( { r i } ) = { r i } . 
We next show that a sufficient requirement for condition G 1 to hold is that, simultaneously, mainstream, total flow

fixed detectors are placed at every segment immediately upstream of a segment with an on-ramp as well as at the

exit of the stretch. We first note that the requirement of condition G 1 , that V ⊆Pre( V ), is indeed satisfied for any subset

 ⊆ { ρ1 , . . . , ρN , r 1 , . . . , r m 

} , since, as it is observed from Fig. 2 , for every vertex there is a directed edge from that vertex

to itself. We employ next the same argument to the proof of satisfaction of condition G 0 , namely that for every subset

S ⊆ { ρ1 , . . . , ρN } it holds that S ∩ Post 
({

ρ j+1 

})
= 

{
ρ j 

}
, where ρ j corresponds to the vertex with the maximum index that

belongs to S with ρ j ≡ y 1 when j = N + 1 . Since ρ j+1 doesn’t belong to S , it follows that condition G 1 is satisfied for every

subset V that contains only density vertices. Thus, in order to guarantee that condition G 1 is satisfied it is sufficient to show

that for every subset V ⊆ { ρ1 , . . . , ρN , r 1 , . . . , r m 

} (i.e., which cont ains vertices of the f orm r i ) there exist s a vertex x that

doesn’t belong to V and, moreover, it is such that V ∩ Post({ x }) is a singleton. From Fig. 2 it is evident that the only cases

the latter requirement may not hold are the following. The subset V contains pairs of vertices of the form { r i , ρi −1 } (namely

an on-ramp vertex and a vertex that corresponds to the density of the segment immediately upstream of the segment with

the on-ramp, respectively) and, potentially, every other vertex on the left of ρi −1 (irrespectively of being a density or an

on-ramp vertex), but it doesn’t contain vertex ρ i (or any other vertex, density or on-ramp, on the right of ρ i ). To see this,

note that, otherwise, V ∩ Post ( { ρi +1 } ) = { ρi } or, in the case where V contains only on-ramp vertices, V ∩ Post ( { ρi } ) = { r i } .
Thus, one can conclude that condition G 1 is satisfied when a mainstream total flow fixed detector is placed at segment

i − 1 , namely at the segment immediately upstream of the segment with the on-ramp, since then V ∩ Post ( { y i } ) = { ρi −1 } . In
other words, condition G 1 holds when an output vertex y i exists as shown in Fig. 2 . 

The fact that the existence of the output vertex y i is also necessary for the satisfaction of condition G 1 (and thus, neces-

sary for strong structural observability ( Reissig et al., 2014 )) follows from the previous discussion by taking V = { r i , ρi −1 } and

noting that the only vertex that has a successor in V (but, it doesn’t belong to V ) is ρ which, however, has two successors
i 

Fig. 4. The graph G 
(
A 

T , C T 
)

for patterns A and C that include matrices A and C , respectively, of system (10), (11) , for the case of a three-lane highway 

stretch where the percentage values of diagonal on-ramp or lateral flows may be nonzero (Model III). 



10 N. Bekiaris-Liberis et al. / Transportation Research Part B 106 (2017) 1–28 

Fig. 5. The graph G 
(
Ā 

T , C T 
)

for patterns Ā = 

1 
T ( A − I ) and C that include matrices A and C , respectively, of system (10), (11) , for the case of a simple 

one-lane highway stretch with N segments (Model V). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in V . Finally, the fact that the existence of the output vertex y 1 is a necessary condition for G 1 to hold, can be shown by

taking V = { ρN } and noting that there exists no vertex which doesn’t belong to V with a successor in V . 

f) Claim 2. The corresponding graph G 
(
A 

T , C T 
)

for Model II is shown in Fig. 3 . It is evident from Fig. 3 that strong structural

observability is preserved under the same mainstream, fixed total flow measurement requirements as in the single-lane

case (i.e., as in Claim 1). Note that a red edge may not exist, if the corresponding lateral flow of connected vehicles is zero,

without affecting the strong structural observability of the system. 

The fact that the measurement configuration i) and ii) of Claim 2 is also necessary for strong structural observability

can be shown as follows. Consider the case where, e.g., the output vertex y 1 doesn’t exist. Then, in the case in which the

red edge from χN to φN doesn’t exist, condition G 1 obviously cannot hold for V = { φN } . The necessity of the measurement

configuration ii) follows analogously with Claim 1, by choosing the set V = { φi −1 , r i } and considering a case in which there

is no red edge from χi −1 to φi −1 . The only vertex that has a successor in V (but, doesn’t belong to V ) is φi which, however,

has two successors in V . 

g) Claim 3. We next turn our attention to Model III, i.e., to the most general case of highway stretches modeled by sys-

tem (10), (11) , where the percentage values of diagonal on-ramp or lateral flows may be nonzero. The corresponding graph

G 
(
A 

T , C T 
)

is shown in Fig. 4 . Unfortunately, condition G 0 cannot be satisfied for this general highway stretch with the mea-

surement configuration shown in Fig. 4 . This can be seen, for example, by choosing the set { φ1 , χ1 , ψ 1 } since there exists

no vertex x such that the set { φ1 , χ1 , ψ 1 } ∩ Post({ x }) contains only one element 7 . 

h) Claim 4. For Model IV, condition G 1 cannot be satisfied for subsets V of the form { φi , r i }. This can be seen from Fig. 4 ,

for the special case of one lane, as follows. The only vertex that doesn’t belong to V and has a successor in V is φi +1 , which,

however, has two successors in V . 

3.6. (Weak) structural observability of lane-Based highway traffic 

We establish the following claims for each of the models I–VI: 

5. Model V is (weakly) structurally observable if and only if: i) total flow fixed detectors are placed at the main exit of

the considered highway stretch; and ii) for each pair of on-ramps, an additional fixed flow sensor is placed anywhere

between two consecutive on-ramps. 

6. Model I is (weakly) structurally observable under the measurement configuration i) and ii) of Claim 5. 

7. Model I is (weakly) structurally observable if and only if total flow fixed detectors are placed at the main exit of the

considered highway stretch. 

8. Model VI is (weakly) structurally observable if and only if: i) for each pair of on-ramps, an additional fixed flow

sensor is placed anywhere between two consecutive on-ramps; and either iia) total flow fixed detectors are placed at

the main exit of every lane of the considered highway stretch, when some lateral flows of connected vehicles may

be zero; or iib) total flow fixed detectors are placed at the main exit of at least one of the lanes of the considered

highway stretch, when all lateral flows of connected vehicles are always nonzero. 

9. Model III is (weakly) structurally observable under the measurement configurations i) and iia) or i) and iib) of Claim

8. 

10. Model III is (weakly) structurally observable if and only if: either ia) total flow fixed detectors are placed at the main

exit of every lane of the considered highway stretch, when some lateral flows of connected vehicles may be zero;

or ib) total flow fixed detectors are placed at the main exit of at least one of the lanes of the considered highway
stretch, when all lateral flows of connected vehicles are always nonzero. 

7 Note that for not making the corresponding graph shown in Fig. 4 more complex than needed, we consider the case where the total flows measured 

at the segments with mainstream fixed detectors are modeled by (4) , with the percentage values of diagonal flows equal to zero. The conclusion drawn is 

not changed when some of the corresponding percentage values are nonzero. 
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Fig. 6. Graphical representation of the considered stretch of highway I-80 in Emeryville, California, employed in the evaluation of the estimation scheme 

with NGSIM data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that Claims 9, 10 and Claims 6, 7 trivially extend to Model II and Model IV, respectively, and thus, they are not

presented here. One can see this by observing that the proofs of Claims 6, 7, 9, and 10 are not affected by the existence or

not of blue edges, i.e., of edges due to non-zero percentages. 

i) Claim 5. We start by constructing the graph G 
(
Ā 

T , C T 
)
, shown in Fig. 5 , where Ā = 

1 
T ( A − I ) . Utilizing the results, e.g.,

from ( Lin, 1974; Liu et al., 2013 ), the one-lane highway stretch is (weakly) structurally observable if the graph G 
(
Ā 

T , C T 
)
,

shown in Fig. 5 , contains no non-accessible vertex and no dilation. A necessary and sufficient condition for the graph to

contain no non-accessible node is that a fixed flow sensor is placed at the exit of the considered highway stretch, or, in

other words, that an output vertex y 1 is placed as shown in Fig. 5 . Moreover, from Fig. 5 one can observe that every density

vertex contains a self-edge, and hence, every density vertex has at least two predecessors. Therefore, the only possibility

for a dilation to exist is when one considers subsets of vertices like the ones indicated in blue circle in Fig. 5 (i.e., when

one considers subsets of vertices that include two consecutive on-ramp vertices together with the density vertices at and

between the cells with the on-ramps). Thus, no dilation exists if and only if an additional fixed flow sensor is placed any-

where between two consecutive on-ramps, as it is indicated in Fig. 5 with the output vertex y i ∗ . With the same reasoning,

it is easy to conclude that, in case there is only one on-ramp, one sensor only, namely a sensor at the exit of the considered

highway stretch, is sufficient and necessary for (weak) structural observability. 
Fig. 7. The aggregated vehicle speeds of the HOV lane (lane j = 1 ) extracted from the NGSIM data. Free-flow conditions prevail in the HOV lave over the 

whole simulation period. 
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Fig. 8. The aggregated vehicle speeds of lanes j = 2 . . . 6 extracted from the NGSIM data. Congestion shock-waves are spilling back from downstream and 

cross the entire highway stretch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j) Claim 6. The total flow measurement configurations in Claim 5 above are sufficient for the (weak) structural observability

of the original system of pattern A since the graph G 
(
A 

T , C T 
)

is similar to the graph G 
(
Ā 

T , C T 
)
, with the only addition that

there are self-edges at all on-ramp vertices. In fact, it is not difficult to see in Fig. 5 that with the addition of self-edges at

the on-ramp vertices, there is still no non-accessible vertex, and, in addition, there exists no dilation since every state vertex

has a self-edge. 

k) Claim 7. For graph G 
(
A 

T , C T 
)

the existence of only one output vertex, namely of y 1 (that corresponds to a fixed flow

sensor at the exit of the considered highway stretch), is sufficient for (weak) structural observability. This can be seen by

observing from Fig. 2 that all state vertices have a self-edge, thus no dilation occurs, and, all state vertices are accessible

from the output vertex y 1 . Necessity is not difficult to establish by observing that when the output vertex y 1 is not located

at the position shown in Fig. 2 , the vertex ρN cannot be accessible. 

The motivation for studying Models V and VI is explained in the next remark. 

Remark 1. For physical systems, (weak) structural observability is usually sufficient for observability since “a possible loss

of observability of a (weakly) structurally observable system can occur only in pathological cases when there are accidental

constraints of the system parameters”, as it is stated in Liu et al. (2011) . Yet, the random walk dynamics that we intro-

duce, which correspond to diagonal elements of matrix A that are equal to each other (in fact, they are all exactly equal to

one), impose some rather non-physical interconnections in model (10) . In principle, such fictitious dependencies/symmetries

among specific elements of matrix A may cause a (weak) structural observability test to eventually underestimate the num-

ber of sensors needed for observability, see, e.g., Liu et al. (2013) 8 . The following example illustrates this fact. 

Example 1. Consider the case of an one-lane highway stretch with two segments and two on-ramps, where free-flow con-

ditions prevail (assume zero percentages of on-ramp diagonal flows). The A and C matrices of system (10), (11) reduce in

this case to 

A = 

⎡ 

⎢ ⎣ 

1 − T 
� v f 0 

T 
� 0 

T 
�v f 1 − T 

� v f 0 

T 
�

0 0 g 1 0 

0 0 0 g 2 

⎤ 

⎥ ⎦ 

(18) 
8 There may be additional symmetries due to, e.g., in the case of one-lane highway, terms of the form 1 − T 
� v i, j and T 

� v i, j that appear in the main 

diagonal and the diagonal immediately below of matrix A, respectively. However, such dependencies don’t seem to cause an underestimation of the mea- 

surement requirements needed for observability since such symmetries/dependencies are inherent to the actual physical system. 



N. Bekiaris-Liberis et al. / Transportation Research Part B 106 (2017) 1–28 13 

Fig. 9. Top: The estimated densities (red line) produced by the estimation scheme versus the real densities (black line) obtained from the NGSIM data. 

Bottom: The estimated on-ramp flow (red line) produced by the estimation scheme versus the real on-ramp flow (black line) obtained from the NGSIM 

data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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C = 

[
0 v f 0 0 

]
, (19) 

respectively, where the elements of the A matrix that correspond to the random walk dynamics have been replaced by some

arbitrary values g 1 and g 2 (instead of one). It can be shown that the determinant of the observability matrix (see paragraph

f) in the Appendix) O = 

⎡ 

⎢ ⎣ 

C 

CA 

CA 

2 

CA 

3 

⎤ 

⎥ ⎦ 

is given by 

det (O ) = 

T 4 v 6 
f 

�5 
( g 1 − g 2 ) 

(
�g 2 − � + T v f 

)
. (20) 

From (20) it is clear that, irrespectively of the values for v f , T , and �, the system is not observable (i.e., the determinant of

the observability matrix is zero), when the on-ramp flow dynamics are identical to each other (which is the case when both

on-ramp flow dynamics are modeled by random walk equations), i.e., when g 1 = g 2 
9 , although according to Claim 7 Model

I is (weakly) structurally observable. 

Models V and VI could be viewed as approximations of the continuous-time version of Models I and III, respectively (see

Section 3.4 for details). As such, the dynamics of the deterministic part of a random walk equation (modeling the on-ramp

flows) are zero. Replacing in the random walk equations the corresponding ones with fixed zeros, breaks potential fictitious

symmetries in the structure of the system, which may appear. Thus, compared to the discrete-time case, it is more likely

that the resulting conditions for (weak) structural observability are more physically oriented as well as sufficient. Indeed,

when Models V and VI are (weakly) structurally observable, then Models I and III are so, since the addition of edges never

weakens the (weak) structural observability of a system (see, e.g., Lin, 1974; Liu et al., 2013 ). 

l) Claim 8. The graph for Model VI is identical to the graph of Fig. 4 with the only difference that on-ramp vertices have no

self-edges. Observe next that the graph of Model VI is derived by the graph of Model V, shown in Fig. 5 , by adding extra

edges that correspond to diagonal flow percentages or lateral flows of connected vehicles, as well as extra vertices that

correspond to densities of additional lanes. One can show that these additional edges and vertices don’t affect the (weak)

structural observability of the system under the measurement configuration of Claim 5 as follows. Since every additional

state vertex has a self-edge, still no dilation occurs. Furthermore, all state vertices are accessible by an output vertex when

there are measurements in all lanes at the exit of the considered highway stretch, no matter if lateral flows of connected

vehicles are zero or not. Finally, in the case where there is a measurement at least one lane at the exit of the stretch, it can

be seen that all state vertices are still accessible by an output vertex as long as the lateral flows of connected vehicles are

always nonzero (i.e., the red edges always exist). 
Fig. 10. Performance comparison of density estimation between the developed estimation scheme (red line) and the ad hoc estimation scheme (blue line) 

for various penetration rates of connected vehicles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 11. Performance comparison of the density estimation for different values of the parameters σρ (top), σ r (middle), and σ R (bottom), for various 

penetration rates of connected vehicles. Each parameter is evaluated independently, namely, maintaining the other two parameters constant and equal to 

the values used for the baseline case. 

 

 

The fact that the measurement configuration i) of Claim 8 is also a necessary condition for (weak) structural observability

can be shown as follows. Consider the set of blue vertices in Fig. 5 and assume that there is no incoming edge to that
9 From (20) one can observe that the system is not observable also in the case where g 2 = 

�−Tv f 
� . However, the latter condition is just an accidental 

condition without any meaningful physical interpretation. 
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particular set, which could potentially exist due to nonzero percentages of diagonal flows or due to nonzero lateral flows to

the adjacent lane. Then this set contains a dilation when the output vertex y ∗
i 

doesn’t exist, and hence, the system is not

(weakly) structurally observable. Moreover, the measurement configuration iia) is a necessary condition for (weak) structural

observability, which can be seen from Fig. 4 as follows. Consider, for example, the case in which there is no output vertex

y 3 , and, in addition, the red edge from χN to ψ N doesn’t exist. Then the vertex ψ N is non-accessible, and thus, the system

is not (weakly) structurally observable. Finally, it is trivial to show that the measurement configuration iib) is a necessary

condition for (weak) structural observability since when condition iib) doesn’t hold there is no output vertex at the exit of

any lane. Hence, all vertices of every segment on the right of some segment with an output vertex y i are non-accessible. 

m) Claims 9 and 10. The proofs of Claims 9 and 10 follow easily from Claim 8 employing similar arguments to the proof of

Claims 6 and 7, respectively. 

In a nutshell, the general model (10), (11) was shown to be strongly structurally observable when all percentage values

for diagonal flows are set to zero if flow detectors are placed at the main exit and entry in each lane of the considered high-

way stretch as well as at every segment immediately upstream of a segment with an on-ramp. Yet, when some percentages

of diagonal flows are not zero the system may not be strongly structurally observable under this detector configuration. As

far as (weak) structural observability is concerned, it was shown that the general system (10), (11) is (weakly) structurally

observable if flow detectors are placed at the main exit and entry of every lane of the considered highway stretch as well

as if, for each pair of on-ramps, an additional flow sensor is placed anywhere between two consecutive on-ramps (no extra

sensor is needed when there is only one on-ramp). 
Fig. 12. Top: Performance index (22) versus percentage of on-ramp diagonal flow for various penetration rates of connected vehicles. Bottom: Performance 

index (23) versus percentage of on-ramp diagonal flow for various penetration rates of connected vehicles. 
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Fig. 13. Performance index (22) that corresponds to the cell in which the on-ramp is located versus percentage of diagonal on-ramp flow, for various 

penetration rates of connected vehicles. 
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Note that the (weak) structural observability results of this section concern the time-invariant version of matrices A and

C with the structure A and C, respectively. However, adapting the results from Poljak (1990 , 1992 ) (see also, Liu et al., 2011;

Perera et al., 2015 ) to the case of the observability matrix one can conclude that the original time-varying system (10), (11) is

(weakly) structurally observable as well. This can be shown by noting that the observability matrix that corresponds to the

time-varying version of matrices A and C , having the structure A and C for all times, has a generic rank MN + m, on any

interval of the form [ k 0 , k 0 + MN + m ] , for all k 0 ≥ 0. The latter conclusion follows by combining the results in Poljak (1990) ;

1992 ) with the (weak) structural observability results of this section, and noting that the elements of matrices A and C are

well-defined, explicit functions of speeds, lateral flows, and densities of connected vehicles (which are all assumed to be

uniformly bounded from above and, in addition, speeds and densities are assumed to be positive and uniformly bounded

from below, see Sections 2.3 and 3.5 ). 

3.7. Stability of the estimation scheme 

We state first the following claim. 

1. The Kalman filter (12) –(14) is exponentially stable if system (10), (11) is strongly structurally observable. 

We now prove Claim 11. 

n) Claim 11. We employ the results from ( Moore and Anderson, 1980 ) provided for the reader’s benefit in paragraph i) in

the Appendix. The matrices A and C are continuous functions of speeds, lateral flows, and densities of connected vehicles

since densities of connected vehicles are assumed to be positive. Given that speeds, lateral flows, and densities of connected

vehicles are all assumed to be uniformly bounded from above, and, additionally, densities are assumed to be uniformly

bounded from below (see also Sections 2.3 and 3.5 ), one can conclude that the matrices A and C are bounded. Moreover,

the matrices Q, R , and R −1 can be made bounded above since Q and R can be freely chosen, and thus, they may be chosen

as Q = σ1 I and R = σ2 I, where σ 1 , σ 2 > 0 and I denotes the identity matrix of appropriate dimension. The freedom to

choose Q = σ1 I automatically implies that the pair ( A, D ) is uniformly completely reachable 10 (UCR) with D = 

√ 

σ1 I, since

the dimension of D equals the dimension of the A matrix. It remains to show that the pair ( A, C ) is uniformly completely

observable 11 (UCO) provided that system (10), (11) is strongly structurally observable. 

Combining the results of Section 3.5 with Corollary IV.2 from ( Reissig et al., 2014 ) as well as with Theorem IV.2 and

Corollary IV.3 from ( Hartung et al., 2012 ), one can conclude that every system (10), (11) with structure ( A , C ) is observable

on any interval of the form [ k 0 , k 0 + MN + m ] , for all k 0 ≥ 0, when system (10), (11) , of structure ( A , C ) is strongly structurally

observable. Thus, the observability Gramian (see paragraph d) in the Appendix) G ( k 0 , k 0 + MN + m ) (see, e.g., Moore and

Anderson, 1980 ) is positive definite for all k 0 ≥ 0. The latter implies that, for each k 0 , the observability Gramian is upper

and lower bounded by its maximum and minimum eigenvalues (times the identity matrix), respectively, which are both

positive. Therefore, the system is UCO if for each k 0 the maximum and minimum eigenvalues of the observability Gramian
10 See paragraph h) in the Appendix for the definition of UCR. 
11 See paragraph g) in the Appendix for the definition of UCO. 
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Fig. 14. Top: Performance index (22) versus percentage of diagonal on-ramp flow for various penetration rates of connected vehicles, where a moving 

average, over a horizon of 30 seconds, of the speed measurements is employed. Bottom: Performance index (23) versus percentage of diagonal on-ramp 

flow for various penetration rates of connected vehicles, where a moving average, over a horizon of 30 seconds, of the speed measurements is employed. 

 

 

 

 

 

 

 

 

 

 

 

are positive as well as uniformly bounded from above and below from constants independent on k 0 . This holds true because

the elements of the matrices A and C are continuous functions of speeds, lateral flows, and densities of connected vehicles,

which are all assumed to be uniformly bounded from above, and, additionally, speeds and densities are assumed to be

positive and uniformly bounded from below (see Sections 2.3 and 3.5 ). 

4. Performance evaluation using NGSIM data 

4.1. Highway stretch and data computation descriptions 

o) Highway Stretch Description. The highway stretch considered in the evaluation of the developed estimation scheme is

shown in Fig. 6 . It is a 400-meter long stretch in the northbound direction of I-80 in Emeryville, California. The highway

stretch is composed of six lanes, where the left-most lane is a so-called high occupancy-vehicle (HOV) lane, which is char-

acterized by the fact that access is restricted to a limited set of vehicles (only vehicles with a driver and one or more

passengers are allowed), and thus, the traffic flow states in the HOV lane are structurally different com pared to the rest of

the lanes. Moreover, an on-ramp is entering the mainstream, the merging nose being located 175 m away from the beginning

of the stretch. For the purpose of estimation, the stretch is divided into four 100-meter long segments. 

p) Data Computation Description. We employ a processed version of NGSIM vehicle trajectory data, recorded from 4:00

PM to 4:15 PM on April 13, 2005, from ( Montanino and Punzo, 2013a; 2013b ). All the required measurements utilized by
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the estimation scheme as well as those used for computing the ground truth traffic state are produced from the available

trajectory data as follows. 

Data employed by the estimator: 

• Vehicles entering the highway stretch are randomly marked as connected, according to the considered penetration

rate, based on a uniform distribution. The measured average cell speeds, namely, v c , employed by the estimator are

computed as the arithmetic average of the speeds of connected vehicles that are present within a cell at a time instant

kT , where T = 5 seconds is the execution period of the estimation scheme. If there is no connected vehicle at a time

instant kT then the measured average speed of the specific cell is set equal to the previous one 12 . 
• The measured lateral flows of connected vehicles, namely, L c , are produced by counting the number of connected

vehicles that moved from one lane to another during a time interval (kT , (k + 1) T ] . Moreover, the cell densities of

connected vehicles, namely, ρc , are computed by counting the number of connected vehicles that are present within

a cell at time instant kT divided by the cell length. Because terms of the form 

L c 

ρc may contain several spiky values,

especially at low penetration rates, mainly due to the rare appearance of connected vehicles’ at a time instant kT (and

thus, also the rare appearance of lateral movements), we employ in the estimation scheme an exponentially smoothed

version of the originally computed terms of the form 

L c 

ρc . Specifically, we define for all i = 1 , . . . , N, j 1 = 1 , . . . , M, and

j 2 = j 1 ± 1 the following smoothed version of a term of the form 

L c 

ρc 

S̄ c i, j 1 → j 2 
(k + 1) = ( 1 − α) ̄S c i, j 1 → j 2 

(k ) + α
L c 

i, j 1 → j 2 
(k ) 

ρc 
i, j 1 

(k ) 
, (21)

where the factor α belongs to the interval [0, 1] and the initial conditions S̄ c 
i, j 1 → j 2 

(0) are viewed as tuning parameters

and are yet to be chosen. 

Note that the problem, at some time instants, of the possible division with zero in relation (21) is resolved by setting

the term 

L c 
i, j 1 → j 2 
ρc 

i, j 1 

, equal to zero. This is motivated by the fact that when the reported density of connected vehicles is

zero, i.e., when there is no connected vehicle present in a cell, then it is reasonable to assume that the corresponding

lateral flow of connected vehicles is also zero, thus no new information is provided as input to the dynamic Eq. (21) of

the smoothed variable. One could resolve the problem of the possible division with zero in relation (21) by employing

other simple ways, such as, for example, by replacing the zero values for the density of connected vehicles by non-

zero values that are computed utilizing a moving average, over a certain horizon, of previous (non-zero) density

values. 
• Total flow measurements at the entry and exit of the stretch, namely, y and u , respectively, are produced via two

respective series of virtual spot detectors, one placed in all lanes at the entrance of the considered highway stretch

and another placed in all lanes at the exit of the highway stretch, where the corresponding flow values are produced

by counting the number of vehicles (irrespectively of being connected or not) that cross the virtual detector locations

during the corresponding periods. 
• Total speed measurements at the exit of the considered stretch, i.e., at each of the last cell of every lane, say, v m 

4 , j 
,

j = 1 , . . . , 6 , are computed as the arithmetic average at time instant kT of the speeds of all vehicles that are present

within each cell. 

Note that since we assume anyway the availability of flow detectors at the exit of the stretch, it is reasonable to assume

that speed measurements from detectors may be available as well. For this reason, we replace the corresponding speeds v c

in the output Eq. (11) by the speeds v m . Alternatively, when occupancy detectors are available instead, the densities at the

exit of the stretch may be directly extracted. In this case, all elements of the C matrix in (11) would simply be equal to one.

In general, we expect small variations in the estimation performance among these cases, so we present only one of them.

Finally, note that since there is only one unmeasured on-ramp within the considered highway stretch only the total flow

measurements at the entry and exit of the stretch are needed for observability, and thus, for the proper operation of the

estimation scheme (see Section 3 ). 

Data for ground truth generation: 

• The total cell densities are computed by counting the number of all vehicles that are present within a cell at a time

instant kT divided by the segment length. 
• The on-ramp flow is computed similarly to the lateral flows, i.e., by counting the number of vehicles leaving the
on-ramp “lane” and entering the mainstream during time interval (kT , (k + 1) T ] . 

12 Note that, in the case in which there is no connected vehicle at k = 0 in specific cells, the measured average cell speeds v i, j (0) of those cells are 

computed as the average of the cell speeds over all cells and over the whole simulation horizon. In an actual implementation this case is virtually irrelevant 

as the estimation scheme is operated continuously. 
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4.2. Traffic conditions description 

The reported traffic conditions reported in the HOV lane and the rest of the lanes can be shown in Figs. 7 and 8 , respec-

tively. Aggregated vehicle speeds v i, j are computed, for each cell, as the arithmetic average at time instant kT of the speeds

of all vehicles that are present within each cell. As it can be seen from Fig. 7 , free-flow conditions prevail in the HOV lane

over the whole simulation period, whereas, as it is shown in Fig. 8 , a massive congestion is present within the stretch in

the rest of the lanes, where congestion waves are coming from downstream and crossing the entire stretch. 

4.3. Performance evaluation for various penetration rates 

q) Quantitative Performance Measure. The estimated densities and on-ramp flow used for evaluation are averages, over 30

seconds, of the produced estimates from the estimator. This allows us to deliver a more smooth version of the originally

produced estimates, which are corrupted with noise due to the noisy/spiky values of the speed, lateral flow, and density

of connected vehicles as well as of the total inflow and outflow at the considered stretch; but, most importantly, estimates

at a pace of 30 seconds are at the lower end of the time resolution required for traffic control or other applications based

on aggregated macroscopic traffic variables. The performance index is chosen as the average, over 10 replications, where in

each replication a different set of vehicles is tagged as connected (due to the fact that, given a certain penetration rate, every

vehicle that enters the considered highway stretch is randomly selected, from a uniform distribution, to be connected), of

the Coefficient of Variation (CV) of the root mean square error of the (30 second-averaged) estimated densities and on-ramp

flow defined by 

CV ρ = 

√ 

1 
MNK 

∑ N 
i =1 

∑ M 

j=1 

∑ K 
k =1 

(
ρi, j (k ) − ˆ ρi, j (k ) 

)2 

1 
MNK 

∑ N 
i =1 

∑ M 

j=1 

∑ K 
k =1 ρi, j (k ) 

(22) 

CV r = 

√ 

1 
K 

∑ K 
k =1 

(
r(k ) − ˆ r (k ) 

)2 

1 
K 

∑ K 
k =1 r(k ) 

, (23) 

respectively, where a quantity ˆ w indicates the estimate of w and M = 6 , N = 4 , K = 23 . 

r) Estimation Performance for a Baseline Case. In Fig. 9 we show the estimation results for the case of 20% penetration rate of

connected vehicles (for one random replication, which is closest to the average performance). The parameters of the Kalman

filter are defined as Q = diag 
(
σρ I N×M 

, σr 

)
(where σρ corresponds to density estimation, whereas σ r to the on-ramp flow

estimation), R = σR I M×M 

, and P (0) = I ( N M+1 ) ×( N M+1 ) . For a fair comparison of the performance of the estimation scheme

in quantitative terms, the filter is always initialized with the real density and on-ramp flow values, whereas the initial

conditions for the filtered versions of the terms of the form 

L c 
ρc 

are always set equal to zero. Moreover, only the percentage

p̄ , modeling the diagonal lateral movement due to the on-rampâs acceleration lane, where the effect of diagonal lateral

movements is expected to be quite strong, has a non-zero value; all of the rest percentage values are set equal to zero.

The estimation results are obtained with a percentage p̄ = 0 . 3 , a smoothing factor α = 0 . 05 , and Kalman filter parameters

σρ = 1 , σr = 10 , σR = 500 , resulting in CV ρ = 18% and CV r = 41% . 

From Fig. 9 it is evident that density estimation is quite accurate both during transient periods and at steady-state,

considering also the high time and space resolution of the considered stretch and the available data. The on-ramp flow

estimation is somewhat sluggish and it suffers from some delay, due to the distance of the total flow detector at the exit

of the considered stretch from the on-ramp location. One could make the response of the on-ramp flow estimation faster,

by choosing a higher value for the element of the Q matrix that corresponds to the on-ramp flow estimation, yet, at the

expense of making the estimation more “nervous” (or, in other words, more noisy). In fact, both the density and on-ramp

estimation performance may be further improved by placing additional flow detectors. For example, whenever it is possible,

an additional flow detector could be placed to measure directly the on-ramp flow (in order to not have to estimate it) or

the flow at the mainstream cell immediately upstream of the cell where the on-ramp is located (to guarantee the strong

structural observability of the system). 

Note that the on-ramp flow estimation seems to feature a small bias (of the order of about 200 veh 
h 

, which corresponds

to a bias of 3 veh 
km 

in a mainstream cell), which can be explained as follows. In the model we employ for the lateral flow of

connected vehicles, it is implied that the total lateral flow, within a time-interval (kT , kT + T ] , is non-zero whenever there

are connected vehicles at time instant kT . Although this appears to be a reasonable modeling implication and formally cor-

rect (considering the case of a 100% penetration rate of connected vehicles), it may be the case that, in practice, this doesn’t

happen. For example, there may be time instants at which the total lateral flow from the on-ramp lane to lane j = 5 is non-

zero, but this lateral flow is not taken into account by the model because vehicles may change lane without contributing to

the density of lane j = 6 . Consequently, this “lost” flow, which originates from the on-ramp, causes an underestimation of

the on-ramp flow. This problem may become more significant as the penetration rate reduces or when free-flow conditions

prevail for a long time period since the density of connected vehicles may be zero quite often. However, this problem may
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be alleviated by reducing the estimator’s implementation time step or by employing some other simple algorithm to replace

the zero density values of connected vehicles, such as, for example, by replacing a zero density by previously reported non-

zero density values or a moving average of those. Because such, somewhat heuristic approaches, may not be, formally , as

accurate as the adopted approach, we don’t employ them in the present work. 

s) Comparison with a simple ad hoc estimation scheme. In order to further investigate and demonstrate the specific contri-

bution of the developed estimation approach, we developed a less systematic, but still thoughtful and reasonable, ad hoc

estimation scheme that computes density estimates by using averaged information from connected vehicles. This simple

scheme has similar data requirements as the proposed approach, albeit without the inherent quality properties and rigorous

proofs that characterize the Kalman filter. Specifically, for the ad hoc estimator, we subdivide the highway into homoge-

neous cells ( m, j ), where m is the stretch index and j is the lane index; a stretch comprises all segments included between

two ramps. We call these highway parts “homogeneous” because they include no ramp that would alter systematically the

traffic conditions in the included segments. Thus, referring to Fig. 6 , stretch m = 1 comprises only segment i = 1 , while

stretch m = 2 comprises segments i = 2 , 3 , 4 . For each cell ( m, j ), we compute its corresponding average speed 

˜ v m, j utilizing

connected vehicle reports according to the method employed also for the case of the developed estimator; namely, ˜ v m, j is

computed by averaging all speed reports from connected vehicles, which are located within each homogeneous cell ( m, j ).

Using this speed and the available per-lane fixed-detector-measured total mainstream flow ˜ q m, j of the same stretch, we de-

rive a density estimate for each cell ( m, j ), i.e., for all its segments ( i, j ), according to ˜ ρm, j = min 

(
˜ q m, j 

˜ v m, j 
, ρmax 

)
, where ρmax

is a reasonable upper-bound for density estimates, which is necessary since this estimation scheme may provide unrealisti-

cally high density values in case of low average speeds. In our experiment, we employ as upper-bound ρmax = 180 veh 
km ×lane 

.

Note that, in this experiment, we employ ˜ q 1 , j = q 1 , j and ˜ q 2 , j = q 4 , j , which is a slightly different configuration than the one

used in our estimation scheme. 

Fig. 10 compares the density estimation performances obtained by using the ad hoc estimator and the developed esti-

mation scheme. It is evident that the proposed approach produces consistently better estimation performance results for all

tested penetration rates. Moreover, it is not clear how unmeasured on-ramp or off-ramp flows may be estimated employing

the ad hoc scheme, while in our approach, this feature is included explicitly. 

In summary, the ad hoc estimator is indeed less accurate, less general, and less flexible than the proposed systematic

Kalman filter-based estimation scheme. Finally, we also would like to highlight that, despite our method may look more

complex in formulation and derivation, it is not highly computationally demanding, since its execution requires only to

calculate arithmetic averages and few matrix multiplications, which makes it feasible for real-time applications. 

4.4. Sensitivity of the estimation performance to variations of parameters 

t) Sensitivity of the Estimation Performance to Variations of the Parameters of the Kalman filter. We evaluate the performance

index (22) obtained for a range of values for the parameters of the Kalman filter, namely σρ , σ r , σ R , for various penetration

rates. From Fig. 11 , it is evident that the estimation scheme is quite insensitive to the choice of these parameters. This is in

agreement with our previous findings in Bekiaris-Liberis et al. (2016) ; Fountoulakis et al. (2016) ; Roncoli et al. (2016a ), where
Fig. 15. Performance index (22) that corresponds to the cell in which the on-ramp is located versus percentage of diagonal on-ramp flow, for various 

penetration rates of connected vehicles, where a moving average, over a horizon of 30 seconds, of the speed measurements is employed. 
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Fig. 16. Top: Performance index (22) versus smoothing factor for various penetration rates of connected vehicles. Bottom: Performance index (23) versus 

smoothing factor for various penetration rates of connected vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we show that, for the cross-lane estimation approach, density estimation is not sensitive to variations of the parameters Q

and R . 

u) Sensitivity of the Estimation Performance to Variations of the Percentage of On-Ramp Diagonal Flow. We show in Fig. 12 the

performance indices (22), (23) obtained for various percentages of diagonal on-ramp flow and various penetration rates,

whereas in Fig. 13 we show the performance index that corresponds only at the cell where the on-ramp is located. In

Figs. 14 and 15 we show the same results for the case where the speed measurements employed by the estimator are a

moving average, over a horizon of 30 seconds, of the speed measurements. In all experiments we use α = 0 . 05 , which was

found to be a good value (see the discussion in paragraph c) below). 

From Fig. 12 one can observe that the overall estimation performance is quite insensitive to changes of the parameter p̄ .

Regarding density estimation, the optimal value for penetration rates higher than 20% is about p̄ = 0 . 2 , whereas for lower

penetration rates the optimal value increases with an average optimal value for all penetration rates of about p̄ = 0 . 36 . From

Fig. 13 one can observe that the density estimation at the particular cell where the on-ramp is located is more sensitive to

changes of the percentage p̄ . In fact, for almost all penetration rates the optimal value obtained is about p̄ = 0 . 2 , whereas

for the lowest penetration rate, namely, for 2%, the optimal value increases. This specific value may be attributed to the

fact that, for the given highway stretch, the accelaration lane of the on-ramp is about 175 m, and thus, its nose is close

to the end of the cell, specifically at around two tenths before the end of the cell. Figs. 12 and 13 confirm, especially for

low penetration rates, the need of imposing a non-zero percentage p̄ . Similar comments may be made from Figs. 14 and 15 ,

where it is evident that the main difference when employing a moving average for speed measurements is the improvement

of the performance index at low penetration rates. 
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Fig. 17. Performance index (22) that corresponds to the cell in which the on-ramp is located versus smoothing factor for various penetration rates of 

connected vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v) Sensitivity of the Estimation Performance to Variations of the Smoothing Factor. We show in Fig. 16 the performance indices

(22), (23) obtained for p̄ = 0 . 3 and for various values of the smoothing factor α in (21) as well as various penetration rates,

whereas in Fig. 17 we show the performance index (22) that corresponds to the estimation of the cell where the on-ramp

is located. From Fig. 16 it is evident that the density estimation performance is quite insensitive to the variations of the

smoothing factor, whereas the on-ramp flow estimation performance is more sensitive. In particular, one can observe from

the bottom plot in Fig. 16 that the value of the smoothing factor at which the minimum of the performance index (23) is

obtained almost decreases with the penetration rate, with an average value of about 0.055. This is consistent with the

expectation that at lower penetration rates a stronger smoothing effect is needed. 

Moreover, as it is evident from the top plot of Fig. 16 , for the specific dataset used in our investigations, the incorpora-

tion of lateral flows in the estimation scheme does not play a major role in estimating the overall per-lane density. However,

incorporating lateral flows in the estimation is beneficial for the estimation performance of the on-ramp flow and the den-

sity at the mainstream cell in which the on-ramp is located, as it is evident from the bottom plot in Fig. 16 and in Fig. 17 ,

since for almost all penetration rates the performance index deteriorates for α = 0 in comparison to the minimum value of

the index that can be achieved choosing a non-zero value for α. These conclusions are reasonable since it is expected that,

taking into account in the estimation the effect of lateral flows (via the lateral flow model), would be more beneficial at

locations where strong lateral movements are observed (e.g., at an on-ramp location). 

Furthermore, from Fig. 17 one can observe that for large values of the smoothing factor the performance index for a 5%

penetration rate is smaller than the performance index for 10% penetration rate. This may seem contradictory, but it can be

explained as follows. In general, from the observed estimated values for the density at the cell where the on-ramp is located,

it is evident that for some replications a much larger error in the reported speed from connected vehicles with respect to the

real cell speed occurs for the case of 10% than for the case of 5% penetration rates, although on average (among replications)

the error is larger for 5%. The deterioration of the performance index for these replications is so significant that causes the

performance index to become (slightly) worse for the case of 10% penetration rate. 

In addition to this, the estimation performance for the case of 10% penetration rate seems to just happened to be more

sensitive to changes of the smoothing factor. This may be attributed to the fact that at such intermediate penetration rates,

the available density and lateral flow information from connected vehicles may neither be sufficiently rich nor sufficiently

poor. As a result, the estimation performance may not be robust either to a choice of large (in the former case) or small

α (in the latter case). Thus, due to the stochastic character of each replication, even a fixed smoothing factor may lead

to a different performance index (among replications), which may happen to be toward a worse performance than when

just using less information. In other words, it may happen that more available information occasionally deteriorates the

performance of the estimation scheme if this information is not as sufficiently good as the estimator may presume. 

In Figs. 18 and 19 we show the same results for the case where the speed measurements employed by the estimator are

a moving average, over a horizon of 30 seconds, of the speed measurements. As in the case of variations of the percentage

p̄ shown in Figs. 14 and 15 , the picture doesn’t change much and the main difference, compared to the case in which the

measured speeds are not averaged, lies in the improvement of the estimation performance for low penetration rates. 

w) Sensitivity of the Estimation Performance to Variations of the Percentages of Diagonal Lateral Flows. In order to confirm our

statement that the estimation performance is quite insensitive to variations of the parameters p i, j we show in Figs. 20 and

21 the performance indices for variations of the parameter p = p i, j , for all ( i, j ), with p̄ = 0 . 3 and α = 0 . 05 (which corre-
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Fig. 18. Top: Performance index (22) versus smoothing factor for various penetration rates of connected vehicles, where a moving average, over a horizon 

of 30 seconds, of the speed measurements is employed. Bottom: Performance index (23) versus smoothing factor for various penetration rates of connected 

vehicles, where a moving average, over a horizon of 30 seconds, of the speed measurements is employed. 

Fig. 19. Performance index (22) that corresponds to the cell in which the on-ramp is located versus smoothing factor for various penetration rates of 

connected vehicles, where a moving average, over a horizon of 30 seconds, of the speed measurements is employed. 
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Fig. 20. Top: Performance index (22) versus percentage of diagonal lateral flows for various penetration rates of connected vehicles. Bottom: Performance 

index (23) versus percentage of diagonal lateral flows for various penetration rates of connected vehicles. 

Fig. 21. Performance index (22) that corresponds to the cell in which the on-ramp is located versus percentage of diagonal lateral flows for various 

penetration rates of connected vehicles. 
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sponds to the baseline case in paragraph b) of Section 4.3 ). Figs. 20 and 21 show that indeed the estimation performance is

quite insensitive to variations of the percentages of diagonal lateral flows for almost all penetration rates. 

5. Conclusions 

We presented a model-based traffic state estimation approach for per-lane density estimation as well as on-ramp flow

estimation in highway sections. The developed approach is largely based on the presence of connected vehicles since it

mainly employs position, speed, and lane change measurements from connected vehicles. The structural observability prop-

erties of the considered highway stretches were studied and necessary as well as sufficient conditions on fixed detectors’

configurations, which guarantee the functionality of the estimation scheme, were derived. A discussion on the stability prop-

erties of the estimator was also presented. It was also shown, via the utilization of NGSIM real microscopic traffic data, that

the performance of the proposed estimation scheme is satisfactory even for low penetration rates of connected vehicles.

Finally, it was demonstrated that the developed scheme is insensitive to the model parameters. 

A topic of our ongoing research is the validation of the developed traffic estimation methodology utilizing a microscopic

simulation platform, specifically, Aimsun Systems (2014) . 
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Appendix 

a) Condition G 0 from ( Reissig et al., 2014 ). For every non-empty subset V ⊆ { 1 , . . . , n } of (state) vertices of G 
(
A 

T , C T 
)

there

exists a vertex v ∈ { 1 , . . . , n + r } such that V ∩ Post({ v }) is a singleton. 

b) Condition G 1 from ( Reissig et al., 2014 ). For every non-empty subset V ⊆ { 1 , . . . , n } of (state) vertices of G 
(
A 

T , C T 
)

that

satisfies V ⊆Pre( V ) there exists a vertex v ∈ { 1 , . . . , n + r } \ V such that V ∩ Post({ v }) is a singleton. 

c) Conditions for (Weak) Structural Observability (see, e.g., Lin, 1974; Liu et al., 2013 ). A linear system ( A, C ) is (weakly) struc-

turally observable if and only if: i) The graph G 
(
A 

T , C T 
)

contains no non-accessible vertex; and ii) the graph G 
(
A 

T , C T 
)

contains no dilation. 

d) Observability Gramian. Consider system (1), (2) . The observability Gramian is defined as the matrix G ( k 0 , k 0 + N 

∗) =∑ k 0 + N ∗−1 

k = k 0 θT ( k, k 0 ) C 
T (k ) C(k ) θ ( k, k 0 ) , where θ is defined as θ ( k, k 0 ) = A ( k − 1 ) A ( k − 2 ) · · · A ( k 0 ) , for all k > k 0 , and it satisfies

θ ( k, k ) = I, with I denoting the identity matrix. 

e) Condition for Observability of Linear Time-Varying Systems (see, e.g., Antsaklis and Michel, 2006 ). The pair ( A, C ) is observable

on [ k 0 , k 0 + N 

∗] if and only if: det ( G ( k 0 , k 0 + N 

∗) ) � = 0 . 

f) Specialization to Linear Time-Invariant Systems (see, e.g., Antsaklis and Michel, 2006 ). The pair ( A, C ) is observable if and

only if: rank ( O ) = n, where n is the dimension of matrix A and O is the observability matrix defined as O = 

⎡ 

⎢ ⎢ ⎣ 

C 

CA 

. 

. . 

CA 

n −1 

⎤ 

⎥ ⎥ ⎦ 

. 

g) Definition of UCO (see, e.g., Moore and Anderson, 1980 ). The pair ( A, C ) is UCO if there exist some integer N 

∗ ≥ 1 and some

real σ ∗ > 0 such that for all k 0 ≥ 0 the observability Gramian satisfies G ( k 0 , k 0 + N 

∗) ≥ σ ∗I. 

h) Definition of Uniform Complete Reachability (UCR) (see, e.g., Moore and Anderson, 1980 ). The pair ( A, D ) is UCR if

there exist some integer N 

∗ ≥ 1 and some real σ ∗ > 0 such that for all k 0 ≥ 0 the reachability Gramian, defined by

Ḡ ( k 0 , k 0 − N 

∗) = 

∑ k 0 
k = k 0 −N ∗ θ̄ ( k 0 + 1 , k + 1 ) D (k ) D 

T (k ) ̄θT ( k 0 + 1 , k + 1 ) , satisfies Ḡ ( k 0 , k 0 − N 

∗) ≥ σ ∗I, where θ̄ is defined as

θ̄ ( k 0 , k ) = A ( k 0 − 1 ) A ( k 0 − 2 ) · · · A ( k ) , for all k 0 > k , and it satisfies θ ( k, k ) = I, with I denoting the identity matrix. 

i) Stability of the Kalman Filter (see, e.g., Moore and Anderson, 1980 ). Let the matrices A, C, Q, R , and R −1 be bounded above

and the pair ( A, D ) UCR for any D such that DD 

T = Q . Then the Kalman filter (12) –(14) is exponentially stable provided that

the pair ( A, C ) is UCO. 

https://doi.org/10.13039/501100000780
https://doi.org/10.13039/501100004963
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