Limited Feedback Channel Estimation in Massive MIMO with Non-uniform Directional Dictionaries

Panos N. Alevizos, Student Member, IEEE, Xiao Fu, Member, IEEE, Nicholas Sidiropoulos, Fellow, IEEE, Ye Yang, and Aggelos Bletsas, Senior Member, IEEE

Abstract—Channel state information (CSI) at the base station (BS) is crucial to achieve beamforming and multiplexing gains in multiple-input multiple-output (MIMO) systems. State-of-the-art limited feedback schemes require feedback overhead that scales linearly with the number of BS antennas, which is prohibitive for 5G massive MIMO. This work proposes novel limited feedback algorithms that lift this burden by exploiting the inherent sparsity in double directional (DD) MIMO channel representation using overcomplete dictionaries. These dictionaries are associated with angle of arrival (AoA) and angle of departure (AoD) that specifically account for antenna directivity patterns at both ends of the link. The proposed algorithms achieve satisfactory channel estimation accuracy using a small number of feedback bits, even when the number of transmit antennas at the BS is large – making them ideal for 5G massive MIMO. Judicious simulations reveal that they outperform a number of popular feedback schemes, and underscore the importance of using angle dictionaries matching the given antenna directivity patterns, as opposed to uniform dictionaries. The proposed algorithms are lightweight in terms of computation, especially on the user equipment side, making them ideal for actual deployment in 5G systems.

Index Terms—Limited feedback, sparse channel estimation, massive MIMO, FDD, double directional channel, antenna directivity pattern.

I. INTRODUCTION

The idea of harnessing a large number of antennas at the base station (BS), possibly many more than the number of user equipment (UE) terminals in the cell, has recently attracted a lot of interest in massive multiple-input multiple-output (MIMO) research. The key technical reasons for this is that massive MIMO can enable leaps in spectral efficiency [1] as well as help mitigating intercell interference through simple linear precoding and combining, offering immunity to small-scale fading – known as the channel hardening effect [2], [3]. Massive MIMO systems also have the advantage of being energy-efficient since every antenna may operate at a low-energy level [4].

Acquiring accurate and timely downlink channel state information (CSI) at the BS is the key to realize the multiplexing and array gains enabled by MIMO systems [2], [5], [6]. Acquiring accurate downlink CSI at the BS using only few feedback bits from the UE is a major challenge, especially in massive MIMO systems. In frequency division duplex (FDD) systems, where channel reciprocity does not hold, the BS cannot acquire downlink channel information from uplink training sequences, and the feedback overhead may be required to scale proportionally to the number of BS antennas [5]. In time division duplex (TDD) systems, channel reciprocity between uplink and downlink is often assumed, and the BS acquires downlink CSI through uplink training. Even in TDD mode, however, relying only on channel reciprocity is not accurate enough, since the uplink measurements at the BS cannot capture the downlink interference from neighboring cells [7], [8]. Thus, downlink reference signals are still required to estimate and feed back the channel quality indicator (CQI), meaning that some level of feedback is practically necessary for both FDD and TDD modes.

The largest portion of the feedback-based channel estimation literature explores various quantization techniques; see [9] for a well-rounded exposition. Many of these methods utilize a vector quantization (VQ) codebook that is known to both the BS and the UE. After estimating the instantaneous downlink CSI at the UE, the UE sends through a limited feedback channel the index of the codeword that best matches the estimated channel, in the sense of minimizing the outage probability [10], maximizing link capacity [11], or maximizing the beamforming gain [12], [13]. Codebooks for spatially correlated channels based on generalizations of the Lloyd algorithm are given in [14], while codebooks designed for temporally correlated channels are provided in [15], [16]. Codebook-free feedback for channel tracking was considered in [17] for spatio-temporally correlated channels with imperfect CSI at the UE. Many limited feedback approaches in MIMO systems consider a Rayleigh fading channel model [18], [12], [13], [19]. Under this channel model, the number of VQ feedback bits required to guarantee reasonable performance is linear in the number of transmit antennas at the BS [5] – which is costly in the case of massive MIMO. Yet the designer is not limited to using VQ-based approaches, and massive MIMO channels can be far from Rayleigh.

In this work, we consider an approach that differs quite sharply from the prevailing limited feedback methodologies. Our approach specifically targets FDD massive MIMO in the sublinear feedback regime. We adopt the double directional (DD) MIMO channel model [20] (see also [21]) instead of the Rayleigh fading model. The DD channel model parameterizes
each channel path using angle of departure (AoD) at BS, small- and large-scale propagation coefficients, and angle of arrival (AoA) at UE – a parametrization that is well-accepted and advocated by 3GPP [22], [23]. We exploit a ‘virtual sparse representation’ of the downlink channel under the double directional MIMO model [20]. Quantizing AoA and AoD, it is possible to design overcomplete dictionaries that contain steering vectors approximating those associated with the true angles of arrival and departure. Building upon [20], such representation has been exploited to design receiver-side millimeter wave (mmWave) channel estimation algorithms using high-resolution [24], or low-resolution (coarsely quantized) analog-to-digital converters (ADCs) [25], [26].

In contrast, we focus on transmitter-side (BS) downlink channel acquisition using only limited receiver-side (UE) computation and feedback to the BS. We propose novel optimization formulations and algorithms for downlink channel estimation at the BS using single-bit judiciously-compressed measurements. In this way, we shift the channel computation burden from the UE to the BS, while keeping the feedback overhead low. Using the overcomplete parametrization of the DD model, three new limited feedback setups are proposed:

- In the first setup, UE applies dictionary-based sparse channel estimation and support identification to estimate the 2D angular support and the corresponding coefficients of the sparse channel. Then, the UE feeds back the support of the sparse channel estimate, plus a coarsely quantized version of the corresponding non-zero coefficients, assuming known thresholds at the BS. This is the proposed UE-based limited feedback baseline method for the DD model.
- In the second setup, the UE compresses the received measurements and sends back only the signs of the compressed measurements to the BS. Upon receiving these sign bits, the BS estimates the channel using single-bit DD dictionary-based sparse estimation algorithms.
- The third setup is a combination of the first and the second, called hybrid limited feedback: UE estimates and sends the support of the sparse channel estimate on top of the compressed sign feedback used in the second setup. Upon receiving this augmented feedback from the UE, the BS can then apply the algorithms of setup 2 on a significantly reduced problem dimension.

For sparse estimation and support identification, the orthogonal matching pursuit (OMP) algorithm [27] is utilized as it offers the best possible computational complexity among all sparse estimation algorithms [28], which is highly desired for resource-constrained UE terminals.

Contributions:

A new limited feedback channel estimation framework is proposed exploiting the sparse nature of the DD model (setup 2). Two formulations are proposed based on single-bit sparse maximum-likelihood estimation (MLE) and single-bit compressed sensing. For MLE, an optimal in terms of iteration complexity [29] first-order proximal method is designed using adaptive restart, to further speed up the convergence rate [30]. The proposed compressed sensing (CS) formulation can be – fortuitously – harnessed by invoking the recent single-bit CS literature. The underlying convex optimization problem has a simple closed-form solution, which is ideal for practical implementation. The proposed framework shifts the computational burden towards the BS side – the UE only carries out matrix-vector multiplications and takes signs. This is sharply different from most limited feedback schemes in the literature, where the UE does the ‘heavy lifting’ [6], [9]. More importantly, under our design, using a small number of feedback bits achieves very satisfactory channel estimation accuracy even when the number of BS antennas is very large as long as the number of paths is reasonably small – which is usually the case in practice [20]; thus, the proposed framework is ideal for massive MIMO 5G cellular networks.

In addition to the above contributions, a new angle dictionary construction methodology is proposed to enhance performance, based on a companding quantization technique [31]. The idea is to create dictionaries that concentrate the angle density in a non-uniform manner, around the angles where directivity patterns attain higher values. The baseline 3GPP antenna directivity pattern is considered for this, and the end-to-end results are contrasted with those obtained using uniform quantization, to showcase this important point. Judicious simulations reveal that the proposed dictionaries outperform uniform dictionaries.

Last but not least, to further reduce computational complexity at the BS and enhance beamforming and ergodic rate performance, a new hybrid implementation is proposed (setup 3). This setup is very effective when the UE is capable of carrying out simple estimation algorithms, such as OMP. At the relatively small cost of communicating extra support information that slightly increases feedback communication overhead, the BS applies the single-bit MLE and single-bit CS algorithms on a dramatically reduced problem dimension. Simulations reveal that the performance of the two algorithms under setup 3 is always better than under setup 2. As in setup 2, the feedback overhead is tightly controlled by the system designer, and the desired level of channel estimation accuracy is attained with very small feedback rate, even in the massive MIMO regime.

Comprehensive simulations over a range of pragmatic scenarios, based on the 3GPP DD channel model [32], compare the proposed methods with baseline least-squares (LS) scalar and vector quantization (VQ) feedback strategies in terms of normalized mean-squared estimation error (NRMSE), beamforming gain, and multi-user capacity under zero-forcing (ZF) beamforming. Unlike VQ, which requires that the number of feedback bits grows at least linearly with the number of BS antennas to maintain a certain level of estimation performance, the number of feedback bits of the proposed algorithms is controlled by the system designer, and substantial feedback overhead reduction is observed for achieving better performance compared to VQ methods. It is also shown that when the sparse DD model is valid, the proposed methods not only outperform LS schemes, but they may also offer performance very close to perfect CSI in some cases.

Relative to the conference precursor [33] of this work, this journal version includes the following additional contributions:
the UE-based limited feedback scheme under setup 1; the novel channel estimation algorithm based on the sparse MLE formulation; the new hybrid schemes under setup 3; and comprehensive (vs. illustrative) simulations of all schemes considered. The rest of this paper is organized as follows. Section II presents the adopted wireless system model, and Section III derives the proposed non-uniform directional dictionaries. Sections IV, V, and VI develop the proposed UE-based, BS-based, and hybrid limited feedback algorithms, respectively. Section VII presents simulation results, and Section VIII summarizes conclusions.

Notation: Boldface lowercase and uppercase letters denote column vectors and matrices, respectively; $(\cdot)^*$, $(\cdot)^T$, and $(\cdot)^H$ denote conjugate, transpose, and Hermitian operators, respectively. $\| \cdot \|_p$, $\Re(\cdot)$, $\Im(\cdot)$, and $\cdot |$ denote the p-norm (with $p \in [0, \infty]$), the real, the imaginary, and the absolute or set cardinality operator, respectively. diag(\mathbf{x}) is the diagonal matrix formed by vector \mathbf{x}. $\mathbf{0}$ is the all-zero vector and its size is understood from the context. I_N is the $N \times N$ identity matrix. Symbol \otimes denotes the Kronecker product. $E[\cdot]$ is the expectation operator. $\mathcal{C}N(\mu, \Sigma)$ denotes the proper complex Gaussian distribution with mean μ and covariance Σ. Matrix (vector) $\mathbf{A} : \mathcal{S}(\mathbf{x})$ comprises the columns of matrix \mathbf{A} (elements of \mathbf{x}) indexed by set \mathcal{S}. Function $\text{sign}(x) = 1$ for $x \geq 0$ and zero, otherwise; abusing notation a bit, we also apply it to vectors, element-wise. Function $(x)_+ = \max(0, x)$, $j \triangleq \sqrt{-1}$ is the imaginary unit, and $\mathcal{Q}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} dt$ is the Q-function. $\partial f(\mathbf{x})$ is the subdifferential of function f given by $\partial f(\mathbf{x}) = \{ q : f(\mathbf{y}) \geq f(\mathbf{x}) + \mathbf{q}^T (\mathbf{y} - \mathbf{x}), \forall \mathbf{y} \in \text{dom} f \}$.

II. System Model

We consider an FDD cellular system consisting of a BS serving K active UE terminals, where the downlink channel is estimated at the BS through feedback from each UE. For brevity of exposition, we focus on a single UE. The proposed algorithms can be easily generalized to multiple users, as the downlink channel estimation process can be performed separately for each UE. The BS is equipped with M_T antennas and the UE is equipped with M_R antennas. The channel is assumed static over a coherence block of T_c symbols, where B_c is the coherence bandwidth (in Hz), T_c is the coherence time (in seconds), and quantity $\left(\frac{2\pi}{T_c}\right)$ indicates the fraction of useful symbol time (i.e., T_s is the OFDM symbol duration and T_c is the cyclic prefix duration).

In downlink transmission, the BS has to acquire CSI through feedback from the active UE terminals, and then design the transmit signals accordingly. At the training phase, the BS employs N_t training symbols for channel estimation. The narrowband (over time-frequency) discrete model over a period of N_t training symbols is given by

$$\mathbf{y}_n = \mathbf{H} \mathbf{s}_n + \mathbf{n}_n, \quad n = 1, 2, \ldots, N_t, \quad (1)$$

where $\mathbf{s}_n \in \mathbb{C}^{M_T}$ is the transmitted training signal, $\mathbf{y} \in \mathbb{C}^{M_R}$ is the received vector, $\mathbf{H} \in \mathbb{C}^{M_R \times M_T}$ denotes the complex baseband equivalent channel matrix, and $\mathbf{n}_n \sim \mathcal{CN}(0, \sigma^2 \mathbf{I}_{M_R})$ is additive Gaussian noise at the receiver of variance σ^2. All quantities in the right-hand side of (1) are independent of each other; $E[\mathbf{s}_n \mathbf{s}_n^H] = \frac{P_T}{M_T} \mathbf{I}_{M_T}$, for all n, where P_T denotes the average total transmit power. The signal-to-noise ratio (SNR) is defined as $\text{SNR} \triangleq \frac{P_T}{\sigma^2}$.

To estimate \mathbf{H}, we can use linear least-squares (LS) [18], or, if the channel covariance is known, the linear minimum mean-squared error (LMMSE) approach [6]. These linear approaches need more than $M_T M_R$ training symbols to establish identifiability of the channel (to ‘over-determine’ the problem) – which is rather costly in massive MIMO scenarios.

A more practical approach to the problem of downlink channel acquisition at the BS of massive MIMO systems would be to shift the computational burden to the BS, relying on relatively lightweight computations at the UE, and assuming that only low-rate feedback is available as well. The motivation for this is clear: the BS is connected to the communication backbone, plugged to the power grid, and may even have access to cloud computing – thus is far more capable of performing intensive computations. The challenge of course is how to control the feedback overhead – without a limitation on feedback rate, the UE can of course simply relay the signals that receives back to the BS, but such an approach is clearly wasteful and impractical. The ultimate goal is to achieve accurate channel estimation with low feedback overhead, i.e., estimate \mathbf{H} using just a few feedback bits.

Towards this end, our starting idea is to employ a finite scatterer (also known as discrete multipath, or double directional) channel model comprising of L paths [20], which can be parameterized using a virtual sparse representation. This sparse representation will lead to a feedback scheme that is rather parsimonious in terms of both overhead and computational complexity. The narrowband downlink channel matrix \mathbf{H} can be written as

$$\mathbf{H} = \sqrt{\frac{M_T M_R}{L}} \sum_{l=1}^{L} \alpha_l \mathbf{c}_T(\phi_l) \mathbf{c}_R(\phi_l) \mathbf{a}_R(\phi_l) \mathbf{a}_T^H(\phi_l) e^{j\varphi_l}, \quad (2)$$

where α_l is the complex gain of the l-th path incorporating path-losses, small- and large-scale fading effects; variables ϕ_l and ψ_l are the azimuth angle of arrival (AoA) and angle of departure (AoD) for the l-th path, respectively; and $\mathbf{c}_T(\cdot) \in \mathbb{C}^{M_T}$, $\mathbf{c}_R(\cdot) \in \mathbb{C}^{M_R}$ represent the transmit and receive array steering vectors, respectively, which depend on the antenna array geometry. Random phase φ_l is associated with the delay of the l-th path. Functions $\mathbf{c}_T(\cdot)$ and $\mathbf{c}_R(\cdot)$ represent the BS and UE antenna element directivity pattern, respectively (all transmit antenna elements are assumed to have the same directivity pattern, and the same holds for the receive antenna elements). Examples of transmit and receive antenna patterns are the uniform directivity pattern over a sector $[\phi^T_l, \phi^U_l]$, given by $\mathbf{c}_T(\phi) = 1$, when $\phi \in [\phi^T_l, \phi^U_l]$ and $\mathbf{c}_T(\phi) = 0$, otherwise, and likewise for $\mathbf{c}_R(\cdot)$. Another baseline directivity pattern is advocated by 3GPP [35]

$$\mathbf{c}_T(\phi) = 10^{\frac{\text{gain}}{20}} + \max \left\{ -0.6 \left(\frac{\phi}{\text{width}} \right)^2 - \frac{\text{height}}{2}, 0 \right\}, \quad (3)$$
with $\phi \in [-\pi, \pi]$, where G_{dB} is the maximum directional gain of the radiation element in dBi, A_m is the front-to-back ratio in dBi, and ϕ_{3dB} is the 3dB-beamwidth. A common antenna array architecture is the uniform linear array (ULA) (w.r.t. y axis) using only the azimuth angle; in this case the BS steering vector (similarly for UE) is given by

$$\mathbf{a}_T(\phi) = \sqrt{\frac{1}{M_T}} \left[1 \ e^{-j2\pi d_y\sin(\phi)} \ldots \ e^{-j2\pi d_y(M_T-1)\sin(\phi)} \right]^T,$$

(4)

where λ is the carrier wavelength, and d_y is the distance between the antenna elements along the y axis (usually $d_y = \lambda/2$).

The channel in (2) can be written more compactly as

$$\mathbf{H} = \mathbf{A}_R \mathbf{H},$$

(5)

with matrices $\mathbf{A}_R \triangleq [c_R(\phi_1) \ a_R(\phi_1) \ldots c_R(\phi_L) \ a_R(\phi_L)]$ and $\mathbf{A}_T \triangleq [c_T(\phi_1) \ a_T(\phi_1) \ldots c_T(\phi_L) \ a_T(\phi_L)]$ denoting all transmit and receive steering vectors in compact form, respectively, while vector $\mathbf{a} \triangleq \sqrt{M_T M_R \left[a_1 e^{j\phi_1} \ldots a_L e^{j\phi_L} \right]^T}$ collects the path-loss and phase shift coefficients. Starting from the model in (5), one can come up with a sparse representation of the channel [20]. First, the angle space of AoA and AoD is quantized by discretizing the angular space. Let us denote these dictionaries \mathcal{P}_T and \mathcal{P}_R for AoDs and AoAs, respectively. Dictionary \mathcal{P}_T contains G_T dictionary members, while \mathcal{P}_R contains G_R dictionary members. One simple way of constructing these dictionaries is to use a uniform grid of phases in an angular sector $[a, b] \subseteq [-\pi, \pi]$. In that case,

$$\mathcal{P}_R = \left\{ a + j \frac{b-a}{G_R} \right\}_{j=1}^{G_R} \quad \text{and} \quad \mathcal{P}_T = \left\{ a + j \frac{b-a}{G_T} \right\}_{j=1}^{G_T}.$$

For given dictionaries \mathcal{P}_R and \mathcal{P}_T, dictionary matrices are defined

$$\mathbf{A}_R \triangleq \{ c_R(\phi) \ a_R(\phi) : \phi \in \mathcal{P}_R \} \in \mathbb{C}^{M_R \times G_R},$$

(6)

$$\mathbf{A}_T \triangleq \{ c_T(\phi) \ a_T(\phi) : \phi \in \mathcal{P}_T \} \in \mathbb{C}^{M_T \times G_T},$$

(7)

which stand for an overcomplete quantized approximation of the matrices \mathbf{A}_R and \mathbf{A}_T, respectively. Hence, the channel matrix in the left-hand side of (5) can be written, up to some quantization errors, as

$$\mathbf{H} \approx \mathbf{A}_R G \mathbf{A}_T^H,$$

(8)

where matrix $\mathbf{G} \in \mathbb{C}^{G_R \times G_T}$ is an interaction matrix, whose (j,k)th element is associated with the jth and kth columns in \mathbf{A}_R and \mathbf{A}_T, respectively – if $|G_{j,k}| \neq 0$, this means that a propagation path associated with the kth angle in \mathcal{P}_T and the jth angle in \mathcal{P}_R is active. In practice, the number of active paths is typically very small compared to the number of elements of \mathbf{G} (i.e., $G_T G_R$). Thus, the matrix \mathbf{G} is in most cases very sparse.

Stacking all columns $\{\mathbf{y}_n\}_{n=1}^{N_t}$ in (1) in a parallel fashion, we form matrix $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_{N_t}]$. Denoting $\mathbf{S} = [s_1 \ s_2 \ldots \ s_{N_t}]$ for the transmitted training symbol sequence and $\mathbf{N} = [n_1 \ n_2 \ldots \ n_{N_t}]$ for the noise, and using the channel matrix approximation in (8), the baseband signal in (1) can be written in a compact matrix form as

$$\mathbf{Y} = \mathbf{A}_R \mathbf{G} \mathbf{A}_T^H \mathbf{S} + \mathbf{N}.$$

(9)
function q takes positive values, its continuity implies that G is monotone increasing. Thus, the following set

$$C_q \triangleq \left\{ \frac{G(a)}{N+1} : a \leq \frac{n(G(b) - G(a))}{N} \right\}_{n=1}^N,$$ \hfill (11)

partitions the range of G in $N+1$ intervals of equal size. By the definition of G, the set in (11) partitions function q in $N+1$ equal area intervals. Having the elements of set C_q, we can find the phases at which $q(\phi)$ is partitioned in $N+1$ equal area intervals – which means that we achieve our goal of putting denser grids in the angular region where the q function has higher intensity. These phases can be found as

$$F_q \triangleq \left\{ G^{-1}(y) \right\}_{y \in C_q},$$ \hfill (12)

where $G^{-1} : [G(a), G(b)] \rightarrow [a, b]$ is the inverse (with respect to composition) function of G. Observe that G^{-1} is a continuous, monotone increasing function since G is itself continuous and monotone increasing. The discrete set F_q is a subset of $[a, b]$ and concentrates more elements at points where function q has larger values.

Let us exemplify the procedure of constructing the angle dictionaries using the 3GPP antenna directivity pattern. As the most general case, we assume $a \leq -3dB$ and $b \geq 3dB$. The domain of q can be partitioned into 3 disjoint intervals as $[a, b] = [a, -\phi_0] \cup [-\phi_0, \phi_0] \cup [\phi_0, b]$, with $\phi_0 = \frac{3dB}{\sqrt{10}}$. Using $q(x)$ in Eq. (3), applying the definition of cumulative function $G(\phi) = \int_{\phi}^{\phi} q(x)dx$, and using its continuity, we obtain

$$G(\phi) = \begin{cases} (\phi - a) 10^{\frac{4.5 - 20\phi}{20}}, & \phi \in [a, -\phi_0), \\ G(-\phi_0) + 10^{\frac{4.5 - 20\phi}{20}} \sqrt{\frac{7.5}{10}} \\ \text{erf}\left(\sqrt{\frac{\ln(10) \cdot 0.5 \phi_0}{12}}\right), & \phi \in [-\phi_0, \phi_0), \\ G(\phi_0) + (\phi - \phi_0) 10^{\frac{4.5 - 20\phi}{20}}, & \phi \in [\phi_0, b), \end{cases}$$ \hfill (13)

where $\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^2} dt$ was utilized. Upon defining $y^- \triangleq G(-\phi_0)$, $y_0 \triangleq G(0)$, and $y^+ \triangleq G(\phi_0)$, the inverse of $G(\cdot)$ can be calculated using Eq. (13) in closed form as

$$G^{-1}(y) = \begin{cases} y 10^{\frac{4.5}{20} - \frac{20\phi}{20}} + a, & y \in [0, y^-), \\ \text{erf}^{-1}\left(\frac{2\sqrt{\ln(10) \cdot 0.5 \phi_0}}{\sqrt{\phi_0}} \left(y_0 - y\right) 10^{\frac{4.5}{20}}\right), & y \in [y^-, y_0), \\ \text{erf}^{-1}\left(\frac{2\sqrt{\ln(10) \cdot 10}}{\sqrt{10} \phi_0} \left(y_0 - y\right) 10^{\frac{4.5}{20}}\right), & y \in [y_0, y^+), \\ \phi_0 + (y - y^+) 10^{\frac{4.5}{20} - \frac{20\phi}{20}}, & y \in [y^+, G(b)], \end{cases}$$ \hfill (14)

where $\text{erf}^{-1}(\cdot)$ is the inverse (with respect to composition) function of $\text{erf}(\cdot)$, and is well tabulated by several software packages, such as Matlab. The definition of inverse function in (14) for interval $[a, b]$, such that $[-\phi_0, \phi_0] \subseteq [a, b] \subseteq [-\pi, \pi]$, is the most general case. As one can see in Fig. 2, the point density of this quantization of the angular space indeed reflects the selectivity of the antenna directivity pattern, as desired.

Fig. 2. 3GPP directivity pattern along with function q applied on the proposed dictionary using $a = -\pi$ and $b = \pi$. The proposed angle dictionaries pack more points around higher values of q.

Algorithm 1 Channel Estimation and Support Identification at UE

Input: Q, y, T.

1. $t := 0$: Initialize $r := y$, $S_g = \emptyset$.
2. while $\|Q^t r\|_\infty > \epsilon$ and $t < T$ do
3. $t := t + 1$.
4. $p := Q^t r$.
5. $n^* := \arg \max_{n=1,2,\ldots,N} \{y_0\}$.
6. $S_g := S_g \cup n^*$.
7. $g_{S_g} := 0$ and $g_{S_g} := Q^t S_g y$.
8. $r := y - Q_g r$.
9. end while

Output: g, S_g.

IV. UE-based Baseline Limited Feedback Sparse Channel Estimation

This section presents a baseline limited feedback setup where UE estimates the sparse channel and sends back the support along with the coarsely quantized nonzero elements of the estimated sparse channel g.

A. Channel Estimation and Support Identification at UE

The inherent sparsity of g in (10) suggests the following formulation to recover it at UE

$$\min_{g \in \mathbb{C}^C : \|g\|_0 \leq L} \left\{ \frac{1}{2} \|y - Qg\|_2^2 \right\}.$$ \hfill (15)

The optimization problem in (15) is a non-convex combinatorial problem. Prior art in compressed sensing (CS) optimization literature has attempted to solve (15) using approximation algorithms, such as orthogonal matching pursuit (OMP) [27], iterative hard thresholding (IHT) [36], and many others; see [28] and references therein. OMP-based algorithms are preferable for sparse channel estimation, due to their favorable performance-complexity trade-off [28]. OMP admits simple and even real-time implementation, and its run-time complexity can be further reduced by caching the QR factorization of matrix Q [27]. For completeness, the pseudo code for OMP is provided in Algorithm 1.
B. Scalar Quantization and Limited Feedback

After estimating the sparse vector \(\hat{g} \) associated with an estimate of interaction matrix \(G \), a simple feedback technique is to send coarsely quantized non-zero elements of \(\hat{g} \), along with the corresponding indices. In this work, we make use of Lloyd’s scalar quantizer to quantize the non-zero elements of \(\hat{g} \), and we denote the scalar quantization operation SQ(\(\hat{g} \)). Upon receiving the bits associated with the non-zero indices and elements of \(\hat{g} \), i.e., \(S_\hat{g} \) and SQ(\(\hat{g} \)), the BS reconstructs channel matrix \(\hat{H} \) via (8), provided it has perfect knowledge of SQ threshold values. As the channel model in (10) has sparse structure comprising \(L \) non-zero elements, for suitably designed \(Q \) and a sufficient number of training symbols, this approach tends to yield a channel estimate comprising \(O(L) \) non-zero elements.

Using a \(Q \)-bit real scalar quantizer, each non-zero element of complex vector \(\hat{g} \) can be represented using \(\lceil \log_2 G \rceil + 2Q \) bits, where the first term accounts for index coding, and the second for coding the real and imaginary parts. Hence, the total bits, where the first term accounts for index coding, and the second for coding the real and imaginary parts. Hence, the total number of feedback bits to estimate the interaction matrix \(G \) at the BS, scales with \(O(L(\lceil \log_2 G \rceil + 2Q)) \). In the worst case, OMP iterates \(T \) times, offering worst case feedback overhead \(T(\lceil \log_2 G \rceil + 2Q) \). Note that the number of feedback bits of the proposed UE-based baseline limited feedback algorithm is independent of \(M_T \).

V. BS-based Limited Feedback Sparse Channel Estimation

In order to reduce the feedback overhead without irreversibly sacrificing our ability to recover accurate CSI at the BS, we propose to apply a pseudo-random dimensionality-reducing linear operator \(\mathbf{P}^H \) to \(y \). The outcome is quantized with a very simple sign quantizer, whose output is fed back to the BS through a low-rate channel. More precisely, the BS receives

\[
\mathbf{b}_R + j \mathbf{b}_I = \text{sign}(\mathbb{R}(\mathbf{P}^H y)) + j \text{sign}(\mathbb{I}(\mathbf{P}^H y)),
\]

where \(\mathbf{P} \in \mathbb{C}^{M_R \times N_{rb}} \), with \(N_{rb} \leq M_T N_{tr} \).

To facilitate operating in the more convenient real domain, consider the following definitions

\[
\mathbf{C}_R^T \triangleq [\mathbb{R}(\mathbf{Q}^H \mathbf{P})^T \; \mathbb{I}(\mathbf{Q}^H \mathbf{P})^T],
\]

\[
\mathbf{C}_I^T \triangleq [-\mathbb{I}(\mathbf{Q}^H \mathbf{P})^T \; \mathbb{R}(\mathbf{Q}^H \mathbf{P})^T],
\]

\[
\mathbf{C} \triangleq \begin{bmatrix} \mathbf{C}_R & \mathbf{C}_I \end{bmatrix} \in \mathbb{R}^{2G \times 2N_{rb}},
\]

\[
\mathbf{x}^T \triangleq [\mathbb{R}(\mathbf{g})^T \; \mathbb{I}(\mathbf{g})^T] \in \mathbb{R}^G,
\]

\[
\mathbf{b}^T \triangleq [\mathbf{b}_R^T \; \mathbf{b}_I^T]^T \in \mathbb{R}^{2N_{rb}},
\]

\[
\mathbf{z}^T \triangleq [\mathbf{z}_R^T \; \mathbf{z}_I^T]^T \in \mathbb{R}^{2N_{rb}},
\]

with \(\mathbb{R}(\mathbf{P}^H \mathbf{g}) = \mathbb{C}_R^T \mathbf{x}, \mathbb{I}(\mathbf{P}^H \mathbf{g}) = \mathbb{C}_I^T \mathbf{x}, \mathbf{z}_R = \mathbb{R}(\mathbf{P}^H \mathbf{h}) \), and \(\mathbf{z}_I = \mathbb{I}(\mathbf{P}^H \mathbf{h}) \). Using the above, along with (16), the received feedback bits at the BS are given by

\[
b_i = \text{sign}(c_i^T x + z_i), \quad i = 1, 2, \ldots, 2N_{rb}.
\]

The objective at the BS is to estimate \(x \), given \(\mathbf{b} \) and \(\mathbf{C} \). If the complex vector \(\mathbf{g} \) has \(L \) non-zero elements, then the real vector \(x \) has up to \(2L \) non-zero elements. More precisely, \(x \) has \(L \) active (real, imaginary) element pairs, i.e., it exhibits group-sparsity of order \(L \), where the groups are predefined pairs here. In our experiments, we have noticed that the distinction hardly makes a difference in practice. In the sequel, we therefore drop group sparsity in favor of simple \(2L \) sparsity.

It should be noted that the number of feedback bits \(N_{fb} \) is controlled by the dimension of \(\mathbf{P} \), which is determined by the designer to balance channel estimation accuracy versus the feedback rate. As \(\| x \|_2 \leq 2L \), parameter \(N_{fb} \) should be chosen more than \(4L \). In practice, depending on the examined cellular setting, it is usually easy to have a rough idea of \(L \) [23].

A. Single-Bit Compressed Sensing Formulation

Single-bit compressed sensing (CS) has attracted significant attention in the compressed sensing literature [37], [38], [39], [40], where the goal is to reconstruct a sparse signal from single-bit measurements. Existing single-bit CS algorithms make the explicit assumption that \(\| x \|_2 = 1 \) [37], or \(\| x \|_2 \leq 1 \) [38], [40]. Thus, the solution of single-bit CS problems is always a sparse vector on a unit hypersphere. In our context, we seek a sparse \(x \) that yields maximal agreement between the observed and the reconstructed signs. This suggests the following formulation

\[
\hat{x} = \arg \min_{x \in \mathbb{R}^G} \left\{ -\sum_{i=1}^{2N_{fb}} \text{sign}(c_i^T x) b_i + \zeta \| x \|_0 \right\},
\]

where \(\zeta > 0 \) is a regularization parameter that controls the sparsity of the optimal solution. Unfortunately, the optimization problem in (19) is non-convex and requires exponential complexity to be solved to global optimality. In addition, notice that the scaling of \(x \) cannot be determined from (19); if \(x \) is an optimal solution, so is \(c x \) for any \(c > 0 \). Therefore, the following convex surrogate of problem (19) is considered

\[
\hat{x} = \arg \min_{x \in \mathbb{R}^G : \| x \|_2 \leq v} \left\{ -\mathbf{x}^T \mathbf{C} \mathbf{b} + \zeta \| x \|_1 \right\},
\]

where \(R_2 \) is an upper bound on the norm of \(x \), which also prevents meaningless scaling up of \(x \) when \(\zeta \) is small. We found that setting \(R_2 \) to be a multiple of \(\sqrt{\sum_{i=1}^{L} v_i} \), where \(v_i = \mathbb{E}[|x_i|^2] \), works very well. The cost function in (20) is known to be an effective surrogate of the one in (19), both in theory and in practice. If the elements of \(\mathbf{C} \) are drawn from a Gaussian distribution, the formulation in (20) will recover \(2L \)-sparse \(x \) on the unit hypersphere (i.e., \(R_2 = 1 \)) with \(c \)-accuracy using \(O(2L \log G) \) measurements [40].

Interestingly, problem (20) admits closed-form solution, given by [40]

\[
\hat{x} = \begin{cases} \mathbf{0}, & \mathbf{C} \mathbf{b} = \mathbf{0} \iff \| \mathbf{C} \mathbf{b} \|_\infty \leq \zeta, \\ \mathbf{T}(\mathbf{v}; \cdot) : \mathbb{R}^{2G} \to \mathbb{R}^{2G} \text{ denotes the shrinkage-thresholding operator, given by} \\
\end{cases}
\]

\[
\left[\mathbf{T}(\mathbf{v}; \mathbf{x}) \right]_i = (|x_i| - v)_+ \text{sign}(x_i), \quad i = 1, 2, \ldots, 2G.
\]

The overall computational cost of computing (21) is \(O(N_{fb} G) \). A key advantage of the adopted CS method is
that it is a closed-form expression, and thus it is very easily implementable in real-time.

B. Sparse Maximum-Likelihood Formulation

Let \(P \) be a semi-unitary matrix, i.e., \(P^H P = I_{2N_b} \). Because vector \(n \) is a circularly-symmetric complex Gaussian vector, the statistics of the noise vector \(z \) are \(\mathcal{N}(0, \sigma_z^2 I_{2N_b}) \), where \(\sigma_z^2 = \frac{1}{2} \). So, each \(b_i = \text{sign}(c_i^T x + z_i) \) is a Rademacher random variable (RV) with parameter \(\text{Pr}(b_i = 1) = 1 - \text{Pr}(b_i = -1) = \text{Pr}(c_i^T x + z_i > 0) = Q\left(-\frac{x}{\sigma_z}\right) \). In addition to that, due to the fact that \(z \)'s covariance matrix is diagonal, all \(\{b_i\}_{i=1}^{2N_b} \) are independent of each other.

In the proposed sparse maximum-likelihood (ML) formulation, the sparse channel parameter vector is estimated by maximizing the regularized log-likelihood of the (sign) observations, \(b \), given \(x \). Using the independence of \(\{b_i\}_{i=1}^{2N_b} \), the sparse ML problem can be formulated as [41]

\[
\inf_{x \in \mathbb{R}^{2G}} \left\{ -\sum_{i=1}^{2N_b} \ln Q\left(-b_i c_i^T x/\sigma_z\right) + \zeta \|x\|_1 \right\}, \tag{23}
\]

where \(\zeta > 0 \) is a tuning regularization parameter that controls the sparsity of the solution. Let us denote \(f(x) = -\sum_{i=1}^{2N_b} \ln Q\left(-b_i c_i^T x/\sigma_z\right) \) and \(h(x) \triangleq f(x) + \zeta \|x\|_1 \). The above is a convex optimization problem since the Q-function is log-concave [42, p. 104]. According to the Weierstrass theorem, the minimum in (23) always exists since the objective, \(h(\cdot) \), is a coercive function, meaning that for any sequence \(\{x^{(t)}\}_{t=1}^{\infty} \), such that \(\|x^{(t)}\| \to 0, \lim_{t \to \infty} h(x^{(t)}) = \infty \) holds true [43, p. 495]. A choice for \(\zeta \) that guarantees all the zero-vector is not solution of (23) is \(\zeta \leq \|\nabla f(0)\|_\infty \) (the proof of this claim relies on a simple application of optimality conditions using subdifferential calculus [43]), where the gradient of \(f(\cdot) \) is given by [17]

\[
\nabla f(x) = -\sum_{i=1}^{2N_b} b_i\frac{e^{-\frac{(c_i^T x)^2}{2\sigma_z^2}}}{\sqrt{2\pi\sigma_z^2}Q\left(-\frac{b_i c_i^T x}{\sigma_z}\right)} c_i. \tag{24}
\]

It is worth noting that the minimizer of problem (23) can be also viewed as the maximum a-posteriori probability (MAP) estimate of \(x \) under the assumption that the elements of vector \(x \) are independent of each other and follow a Laplacian distribution.

The Hessian of \(f(\cdot) \) is given by [17]

\[
\nabla^2 f(x) = C \text{diag}(m(x)) C^T, \tag{25}
\]

where the elements of vector \(m(\cdot) \) are given by

\[
m_i(x) = \frac{e^{-\frac{(c_i^T x)^2}{2\sigma_z^2}}}{2\pi\sigma_z^2} Q\left(-\frac{b_i c_i^T x}{\sigma_z}\right) + b_i \frac{e^{-\frac{(c_i^T x)^2}{2\sigma_z^2}}}{\sqrt{2\pi\sigma_z^2}Q\left(-\frac{b_i c_i^T x}{\sigma_z}\right)} c_i, \tag{26}
\]

\(i = 1, 2, \ldots, 2N_b \). Having calculated the Hessian, due to Cauchy-Swartz inequality for matrix norms

\[
\|\nabla^2 f(x)\|_2 \leq \|C\|_2 \|\text{diag}(m(x))\|_2 \|C\|_2^T \|_2 = \|C\|_2 \|m(x)\|_\infty \triangleq L(x), \forall x \in \mathbb{R}^{2G}. \tag{27}
\]

Algorithm 2 Limited Feedback Sparse ML Channel Estimation

\begin{algorithm}
\caption{Limited Feedback Sparse ML Channel Estimation With Reduced Computational Cost}
\begin{algorithmic}
\State Input: \(C, b, \zeta \)
\State \(t := 0 \) : Initialize \(\beta^{(0)} := 1, u^{(0)} = x^{(0)} \in \mathbb{R}^{2G} \)
\While{Stopping criterion is not reached}
\State \(L_t := \|C\|_2 \|m(u^{(t)})\|_\infty \)
\State \(x^{(t+1)} := \nabla f(u^{(t)}) - \frac{1}{L_t} \nabla f(u^{(t)}) \)
\State \(\beta^{(t+1)} := 1 + \sqrt{1 + 4(\beta^{(t)})^2} \)
\State \(u^{(t+1)} := x^{(t+1)} + \frac{\beta^{(t+1)} - 1}{\beta^{(t+1)}} \left(x^{(t+1)} - x^{(t)}\right) \)
\If{\(\nabla f(u^{(t)}) \top \left(x^{(t+1)} - x^{(t)}\right) > 0 \)}
\State \(\beta^{(t+1)} := 1, u^{(t+1)} := x^{(t+1)} \)
\EndIf\end{algorithmic}
\end{algorithm}

It is noted that for bounded \(\|x\|_1 \), \(L(x) \) is also bounded. An accelerated gradient method for the \(l_1 \)-regularized problem in (23) is utilized, where sequences \(\{x^{(t)}\} \) and \(\{u^{(t)}\} \) are generated according to [44]

\[
x^{(t+1)} = T\left(\frac{\zeta}{L(u^{(t)})}; u^{(t)} - \frac{1}{L(u^{(t)})} \nabla f(u^{(t)}) \right), \tag{28a}
\]

\[
\beta^{(t+1)} = 1 + \sqrt{1 + 4(\beta^{(t)})^2}, \tag{28b}
\]

\[
u^{(t+1)} = x^{(t+1)} + \frac{\beta^{(t+1)} - 1}{\beta^{(t+1)}} \left(x^{(t+1)} - x^{(t)}\right). \tag{28c}
\]

For bounded \(L(\cdot) \), which holds in our case, the sequence generated by updates in (28) converges to an \(\epsilon \)-optimal solution (a neighborhood of the optimal solution with diameter \(\epsilon \)) using at most \(O(1/\sqrt{\epsilon}) \) iterations [44].

Algorithm 2 illustrates the proposed first-order \(l_1 \)-regularization algorithm incorporating Nesterov’s extrapolation method. In addition, an adaptive restart mechanism [30] is utilized in order to further speed up the convergence rate. Experimental evidence on our problems shows that it works remarkably well. At line (1), quantity \(\|C\|_2 \) is precomputed, requiring \(O(N_b^2) \) arithmetic operations. The per iteration complexity of the proposed algorithm is \(O(N_b G) \) due to the evaluation of \(\nabla f(u^{(t)}) \) and \(m(u^{(t)}) \) at lines 4 and 5, respectively. In the worst case, MLE-reg algorithm iterates \(I_{max} \) times offering total computational cost \(O(I_{max} + N_b N_b G)/ \). Note that such complexity is linear in \(G \), and thus, affordable at a typical BS.

To reconstruct an estimate of the downlink channel, the BS obtains \(\hat{g} \) from \(\hat{x} \) as \(\hat{g} = \hat{x}_{1:G} + j\hat{x}_{G+1:2G} \) and forms an estimate of the interaction matrix \(\hat{G} \) using the inverse of the vectorization operation, i.e., \(\hat{G} = \text{unvec}(\hat{g}) \). With \(\hat{G} \) available, the downlink channel matrix can be estimated as \(\hat{H} = A_{\mu 2} \text{GA}_j^\top \).

VI. HYBRID LIMITED FEEDBACK SPARSE CHANNEL ESTIMATION WITH REDUCED COMPUTATIONAL COST

The last setup proposed in this work is a hybrid between the setups presented in Sections IV and V. This third setup is
better suited to cases when the UE can afford to run simple channel estimation algorithms, such as OMP. The UE-based support identification algorithm presented in Algorithm 1 is combined with the BS-based limited feedback schemes of Section V resulting in an algorithm that can significantly reduce the computational cost at the BS, and possibly even the overall feedback overhead for a given accuracy.

The UE first estimates the support of the downlink channel vector \(\hat{g} \), \(\hat{S}_g \), using Algorithm 1. Let \(\hat{g} \) be the \(\bar{T}/G \)-sparse channel estimate. As feedback, UE sends the indices associated with non-zero elements of estimate \(\hat{g} \) (i.e., \(\hat{S}_g \)), using \(\bar{T} \log_2(G) \) bits, along with \(2N_{fb} \) sign-quantized bits \(b \) associated with received signal \(y \). Upon receiving \(b \) and an estimate of the support of \(x \), the BS exploits the fact that the elements of vector \(\hat{x} \) are zero in the complement of the support \(\hat{S}_g = \{1, 2, \ldots, 2G\} \setminus \hat{S}_g \), i.e., \(\hat{x}_{\hat{S}_g^c} = 0 \), implying that

\[
b_i = \text{sign} \left(\sum_{j \in \hat{S}_g} c_{ij} x_j + z_i \right), \quad i = 1, 2, \ldots, 2N_{fb},
\]

and applies either of the two limited feedback channel estimation algorithms presented in Sections V-A and V-B, but this time limited to the reduced support \(\hat{S}_g \) to obtain an estimate \(\hat{x}_{\hat{S}_g} \). The whole procedure is listed in Algorithm 3.

At the BS, the computational complexity of the proposed hybrid limited feedback sparse estimation algorithms invoked in Algorithm 3 is reduced by a factor \(\bar{T}/G \) compared to the pure BS-based counterparts of Section V. It is reasonable to assume that \(\bar{T} \) is of the same order as \(L \); thus, using extra \(\bar{T} \log_2(G) \) feedback bits, the computational cost of BS reconstruction algorithms executed over a reduced support depends only on \(N_{fb} \) and \(\bar{T} \) and becomes independent of the joint dictionary size \(G \). Numerical results show that not only the complexity diminishes, but the estimation error can be further reduced compared to the case of not sending the support information. This can in turn be used to reduce \(N_{fb} \), if so desired.

VII. Numerical Results

The double directional channel model in Eq. (2) is used with uniform antenna directivity pattern at UE and uniform or 3GPP antenna directivity pattern at the BS. BS and UE are equipped with ULAs. A variety of performance metrics is examined such as normalized mean-squared error (NRMSE), beamforming gain, and multiuser sum-capacity. The uplink feedback channel is considered error-free. The following algorithms are compared:

- LS channel estimation at the UE, given by \(\hat{H}_{LS} = Y S_y \), and quantization of \(\hat{H}_{LS} \)'s elements using scalar quantizer of \(Q \) bits per real number. This feedback scheme requires exactly \(2QM_{TR}N_{IR} \) feedback bits. This scheme is abbreviated LS-SQ.
- For the case of \(M_{IR} = 1 \), we add in the comparisons a VQ technique that applies (a) LS channel estimation at the UE, followed by (b) VQ of \((\hat{H}_{LS})^H \), and (c) feedback of the VQ index. The VQ strategy of [12] based on a 2\(Q \)-PSK codebook \(\mathcal{W}_{PSK} = \{ e^{j2\pi q\pi/2} \}_{q=1}^{2^Q} \) is adopted for its good performance and low overhead (\(Q(M_T-1) \) bits for channel feedback). This scheme is abbreviated LS-VQ.
- Combination of OMP in Algorithm 1 with VQ technique in [13] using a rate 2/3 convolution code. The algorithm exploits support information by executing first the OMP algorithm for support identification and then performs vector quantization over the reduced support. The number of states in trellis diagram is 8, and parameter \(Q \) determines the number of quantization phases in the optimization problem in [13, Eq. (12)], equal to \(2^Q \). This scheme uses \(2T + 3 \) feedback bits, and is abbreviated OMP-VQ.
- The proposed UE-based baseline limited feedback scheme presented in Section IV, henceforth abbreviated OMP-SQ.
- Single-bit CS limited feedback, as given in Section V-A.
- Single-bit \(l_1 \)-regularized MLE limited feedback, as described in Section V-B.
- Hybrid single-bit \(l_1 \)-regularized MLE and single-bit CS limited feedback algorithms, presented in Section VI.

For scalar quantization, LS-SQ uses Lloyd’s algorithm for non-uniform quantization and assumes perfect knowledge of SQ thresholds at the BS.

A. NRMSE vs. SNR

First the impact of SNR on NRMSE performance for the BS-based schemes and hybrid counterparts is examined. NRMSE is defined as \(\mathbb{E} \left[\| \hat{H} - \hat{H}_L \|_F^2 \right] \). The angle dictionary sizes for all algorithms were set to \(G_T = 140 \) and \(G_R = 16 \). The number of scatterers, \(L \), follows discrete uniform distribution over \(\{5, 6, \ldots, 9, 10\} \). We study two cases where the azimuth angles \(\phi_l \) and \(\phi'_{l} \) (a) were drawn uniformly from uniform angle dictionaries \(\mathcal{P}_R \) and \(\mathcal{P}_T \), both defined over \([-\pi/2, \pi/2] \); and (b) were random variables uniformly distributed over \([-\pi/2, \pi/2] \), i.e., \(\phi_l, \phi'_{l} \sim \mathcal{U}([-\pi/2, \pi/2]) \), where \(\phi_l \sim \mathcal{U}(0, 40) \) and path delay \(\varphi_l \sim \mathcal{U}(0, 2\pi) \). The dimensionality reducing matrix \(\mathbf{P} \) for all algorithms was a random selection of \(N_{fb} \) columns of the \(N_{tr}M_{IR} \times N_{fb} \) DFT matrix. Hybrid schemes use \(\bar{T} = 15 \).

![Fig. 3 shows the impact of quantization error for AoA](image-url)

It can be seen that if the angles are drawn from the dictionaries there is no error due to angle quantization.
and the NRMSE of all studied algorithms becomes quite smaller (brown and magenta dotted curves) than the case where the angles are drawn uniformly in $[-\pi/2, \pi/2]$ (green and blue solid curves). The observation is that the impact of quantization error is severe for BS-based algorithms and their hybrid counterparts, so to compensate for this, larger dictionary sizes G_{fb} and $G_{\text{fb},r}$ will be utilized. In what follows, we always draw $\varphi, \varphi_i \sim U[-\pi/2, \pi/2]$, so there is always dictionary mismatch.

Fig. 4 compares LS-SQ, OMP-VQ, OMP-SQ, hybrid MLE l_1-regularized, and hybrid CS algorithms. To alleviate quantization errors, the proposed dictionary-based algorithms utilize $G_T = G_R = 240$. Moreover we use $L = 15$ for the proposed limited feedback algorithms. For fair comparison, we set parameters so that the number of feedback bits is of the same order of magnitude for all algorithms considered. Note that for OMP-VQ the feedback overhead is not a function of Q and thus it cannot be increased. Hybrid l_1-regularized MLE and hybrid CS are executed with $N_{\text{fb}} = 100$ and $N_{\text{fb}} = 120$, corresponding to 440 and 496 feedback bits, respectively. We set $Q = 3$ (corresponding 1548 feedback bits) for LS-SQ, $Q = 5$ (corresponding to at most 390 feedback bits) for OMP-SQ, while OMP-VQ employs 33 feedback bits with 2^Q phase states.

Fig. 4 shows the NRMSE performance as a function of SNR. For SNR less than -5 dB the hybrid limited feedback schemes achieve the best NRMSE performance. In the very low SNR regime the hybrid CS algorithm offers the smallest NRMSE. For SNR greater than 6 dB, OMP-SQ with $Q = 5$ outperforms the other algorithms. The poor performance of LS-SQ stems from the fact that the soft estimate \hat{H}_{LS} before quantization is itself poor, as it does not exploit sparsity. OMP-VQ offers the worst performance across all algorithms in the high SNR regime. That happens because the VQ technique in [13] employs a predefined structured codebook at the BS, designed for Rayleigh fading. Although the proposed algorithms use somewhat fewer feedback bits than LS-SQ, they achieve much better performance due to their judicious design. For a moderate number of BS antennas, hybrid limited feedback algorithms are more suitable at low-SNR, while OMP-SQ is better at high-SNR.

B. NRMSE vs. L

Using the same parameters as in the previous paragraph, Fig. 5 studies the impact of the maximum number of OMP iterations, L, on NRMSE performance of OMP-SQ and hybrid limited feedback algorithms under different values of SNR. It can be seen that in the low SNR regime the smaller L is, the smaller NRMSE can be achieved by all schemes. Namely, the smallest NRMSE is achieved for $L = 5$ for all algorithms. On the other hand, in the high SNR regime the NRMSE versus L curve has a convex shape with minimum around $L \in [10, 20]$ for all algorithms. This indicates that L should be chosen $\geq L$, but not much higher than L.

C. NRMSE vs. Joint Dictionary Size and Number of Transmit Antennas

Next the impact of joint dictionary size, G, and the number of transmit antennas on NRMSE is studied for the proposed algorithms in Sections IV and VI. For this simulation, $M_R = 1$, $N_{\text{tr}} = 80$, and SNR = 10 dB. Hybrid schemes utilize $N_{\text{fb}} = 80$, the number of paths, the maximum number of OMP
iterations, and the dimensionality reducing matrix are the same as in Section VII-A. OMP uses \(Q = 5 \) bits per real number, and thus hybrid schemes and OMP utilize \(160 + 15 \log_2 G \) and \(150 + 15 \log_2 G \) feedback bits, respectively, in the worst case.

Fig. 6 studies the impact of \(M_T \) and \(G \) on NRMSE. Recall that \(G \) is determined from \(G_T \) and \(G_R \). Three different scenarios are considered for \(G \), using \(G_T = G_R = 7 \), \(G_T = G_R = 31 \), and \(G_T = G_R = 127 \). From Fig. 6 it is observed that for fixed \(G \) increasing the number of transmit antennas yields higher NRMSE, while for fixed number of transmit antennas, using higher \(G \) yields reduced NRMSE, as expected. Note that for \(M_T \geq 200 \) OMP-SQ has the worst NRMSE performance, while for smaller \(M_T \) it achieves better NRMSE compared to hybrid schemes. For small \(M_T \), increasing \(G \) significantly reduces the NRSME. For large \(M_T \), increasing \(G \) has little impact on the NRMSE.

D. Beamforming Gain vs. SNR

Using the same algorithms and parameters as in Section VII-C with \(M_T = 128 \), \(M_R = 1 \), and \(P_t = 1 \) Watt, in Fig. 7 we study the beamforming gain performance metric, defined as \(\mathbb{E} \left(\frac{P_T}{\| \mathbf{h} \|_2^2} | \mathbf{h}^H \hat{\mathbf{h}} \|^2 \right) \), as a function of SNR. This metric measures the similarity between the actual channel \(\mathbf{h} \) and the normalized channel estimate \(\hat{\mathbf{h}} \) and is proportional to average received SNR. We also include the performance of perfect CSI to assess an upper bound on beamforming gain performance for the studied algorithms. Hybrid schemes, OMP-VQ (\(Q = 5 \)), OMP-SQ (\(Q = 5 \)), LS-SQ (\(Q = 4 \)), and LS-VQ (\(Q = 5 \)) use 33, 400, 390, 1024, and 635 feedback bits overhead, respectively. Interestingly, for SNR \(\geq 20 \) dB OMP-SQ with \(Q = 5 \) achieves the performance of perfect CSI. The proposed hybrid schemes have very similar but slightly worse performance relative to OMP-SQ. However, the hybrid schemes use much fewer feedback bits. In addition, the performance gap between perfect CSI and the proposed algorithms is less than 1.5 dB for SNR \(\geq 10 \) dB. The proposed algorithms outperform LS schemes for all values of SNR. OMP-VQ performs very poorly compared to OMP-SQ and other hybrid schemes. OMP-SQ offers the best performance, but note that it assumes perfect knowledge of the SQ thresholds at the BS, which in reality depend on the unknown channel. Perhaps surprisingly, LS-VQ offers smaller beamforming gain than LS-SQ. One reason is that LS-SQ assumes perfect knowledge of the scalar quantization thresholds at the BS; another is that the vector-quantized codewords are confined to be PSK-codewords that lie on the \(M_T \)-dimensional unit complex circle, so magnitude variation among the elements of \(\mathbf{h}^T \) cannot be exploited. We also note that the majority of VQ algorithms in the limited feedback literature, including LS-VQ, are designed for ‘isotropic’ Rayleigh-fading channels, and the DD model used here is far from Rayleigh – so LS-VQ and OMP-VQ are not well-suited for the task.

E. Beamforming Gain vs. Number of Transmit Antennas

A more realistic channel scenario is considered next, based on the 3GPP multipath channel model [32], where pathloss and shadowing are also incorporated in the path gains \(\alpha_l \). We assume a system operating at carrier frequency \(f_{\text{car}} = 2 \) GHz, and thus \(\lambda \approx 0.15 \). Transmit power and noise power are set 0.5 Watts and \(10^{-10} \) Watts, respectively. The number of paths is a discrete uniform RV in \([5, 6, \ldots, 19, 20]\). For each path \(l \): \(\phi_l, \phi'_l \sim U[-\pi/2, \pi/2] \), path distance \(d_l \sim U[80, 120] \), common path-loss exponent \(\eta \sim N(2.8, 0.1^2) \), inverse path-loss \(\rho_l = \left(\frac{\lambda}{\pi} \right)^2 \left(\frac{1}{d_l} \right)^\eta \), shadowing \(10 \log_{10}(\nu_l) \sim N(10 \log_{10} (\nu_l), 4^2) \), and Rician parameter \(\kappa_l \sim U[0, 50] \). Thus, the final multipath gain is given by \(\alpha_l \sim CN\left(\sqrt{\frac{\kappa_l}{\kappa_l + 1}} v_l, 1, \sqrt{\frac{\kappa_l}{\kappa_l + 1}} v_l \right) \), with path delay \(\varphi_l \sim U[0, 2\pi] \). The average received SNR, incorporating path-losses, small- and large-scale fading effects, changes per realization, so an implicit averaging with respect to the received SNR is applied. The beamforming gain of all algorithms compared in Section VII is examined as a function of the number of transmit antennas. For this scenario we consider: \(M_R = 1 \) received antenna, \(N_{t, t} = 64 \) training symbols, \(\bar{L} = 25 \) for OMP and hybrid schemes, \(N_{t, b} = N_{t, t} = 64 \) for all BS-based limited feedback algorithms and their hybrid counterparts, and \(N_{t, b} \) columns of the DFT matrix were chosen for the
dimensionality reducing matrix P. The dictionary sizes were set to $G_T = G_R = 180$.

Fig. 8 examines a massive MIMO scenario where M_T becomes very large. We observe that in this scenario the beamforming gain takes values of order 10^{-8}. This is not surprising since on top of small-scale fading this scenario further incorporates path-loss and shadowing effects.

From Fig. 8 we note that hybrid l_1-regularized MLE achieves the best beamforming gain for almost all M_T, while hybrid CS has very similar performance. OMP-SQ and OMP-VQ are the only algorithms whose performance decreases as the number of transmit antennas increases. It should be noted that OMP-VQ ($Q = 5$), OMP-SQ (with $Q = 3$), classic BS-based, and hybrid limited feedback schemes utilize only 53, 524, 128, and 502, feedback bits overhead, respectively. MLE l_1-reg and CS have worse performance than their hybrid counterparts. On the other hand, LS-SQ (with $Q = 2$), and LS-VQ (with $Q = 4$), employ $4M_T$ and $4(M_T - 1)$ feedback bits overhead, that is linear in M_T. All proposed algorithms outperform LS schemes as they exploit the inherent sparsity of the DD channel, while the OMP-VQ algorithm offers very poor performance. It can be concluded that in the massive MIMO regime with realistic channel parameters, the BS-based limited feedback algorithms and their hybrid counterparts perform better than the other alternatives.

Next Fig. 9 compares the proposed angle dictionary (labeled ‘new dict.’) and the uniform quantization dictionary (labeled ‘unif. dict.’) in the same massive MIMO scenario assuming that each BS antenna directivity pattern is given by Eq. (3) using $\phi_{\text{BIB}} = 55^\circ$, $A_m = 30$ dB, and $G_{\text{BIB}} = 8$ dBi [23]. All algorithms are configured with the same parameters as in the previous paragraph. From Fig. 9 it is evident that for the same number of dictionary elements, the proposed non-uniform directivity-based dictionary offers considerably higher beamforming gain performance compared to the uniform one. In contrast to LS schemes, as the number of transmit antennas increases, the feedback overhead for the proposed algorithms remains unaffected, rendering them a promising option for massive MIMO systems.

F. Multiuser Sum-Capacity vs. Transmit Power

In practice, cellular systems serve concurrently multiple UE terminals at the same time, so a multiuser performance metric is of significant interest. Towards this end, we consider the downlink sum-capacity of a cellular network under zero-forcing ZF beamforming as a function of P_T, assuming $M_T = 256$, $K = 16$ scheduled UEs, $R_{\text{B}} = 1$, and $N_T = 80$. Hybrid schemes and OMP algorithms employ T, $G_T = 210$ and $G_B = 180$ elements. BS uses a data stream of dimension K, $\mathbf{u} \in \mathbb{C}^K$. After receiving the feedback from K UEs, BS estimates the downlink channels for each user k, \mathbf{h}_k^H, forms the compound downlink channel matrix $\mathbf{T} = [\mathbf{h}_1 \mathbf{h}_2 \ldots \mathbf{h}_K]^H$.

Under ZF precoding with equal power allocation P_T per user, precoding matrix V is given by $V = [\mathbf{v}_1 \mathbf{v}_2 \ldots \mathbf{v}_K] = \mathbf{t} (\mathbf{H}^H \mathbf{T})^{-1} \mathbf{H}^H$, where $\mathbf{t}^2 = \frac{K}{\text{trace}(\mathbf{T}^H \mathbf{T})}$ guarantees that precoding vector satisfies the power constraint. BS transmits $s = \mathbf{Vu}$. The corresponding instantaneous signal-to-interference-plus-noise-ratio (SINR) for user k is given by $\gamma_k = \frac{\mathbf{H}_k^H \mathbf{H}_k}{\sum_{k' \neq k} \mathbf{H}_{k'}^H \mathbf{H}_{k'} + K \sigma^2}$. The achievable ergodic rate for user k is given by $E[\log(1 + \gamma_k)] = \left(1 - \frac{N_T}{2} \right) E[\log_2(1 + \gamma_k)]$. The achievable ergodic sum-rate (sum-capacity) for K scheduled UEs is expressed as $\sum_{k=1}^{K} E[\log_2(1 + \gamma_k)]$.

Fig. 10 depicts the downlink sum-capacity as a function of BS transmit power P_T. The downlink channels for each user are generated using the same parameters as in Section VII-E with antenna directivity pattern parameters $\phi_{\text{BIB}} = 55^\circ$, $A_m = 30$ dB, and $G_{\text{BIB}} = 8$ dBi. The coherence block occupies 20 resource blocks, i.e., $U_c = 1680$ channel uses. The following algorithms are compared: LS-SQ with $Q = 3$, LS-VQ with $Q = 5$, OMP-VQ with $Q = 5$, OMP-SQ with $Q = 3$, and hybrid schemes using the proposed dictionaries (labeled ‘new dict.’) and uniform dictionaries (labeled ‘unif. dict.’). The performance gains of the proposed non-uniform dictionaries over conventional uniform ones are evident in Fig. 10, especially for MLE-reg and OMP-SQ algorithms. For 1 Watt transmission power, MLE-reg and OMP-SQ with
proposed non-uniform dictionaries offer 15 and 20 \text{bit/sec/Hz}
higher capacity than MLE-reg and OMP-SQ executed with
uniform dictionaries. The proposed methods in conjunction
with non-uniform dictionaries offer a substantial sum-capacity
performance gain compared to LS schemes. The performance
of OMP-VQ is very poor, at least 5 dB worse than proposed
MLE-reg algorithm with non-uniform dictionaries for all
values of P_T.

G. Complexity Analysis

In this section a detailed computational complexity analysis
at both UE and BS is presented for all studied algorithms.
Table I shows the computational cost of all studied algorithms
along with the required number of feedback bits.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity at the BS</th>
<th>Complexity at the UE</th>
<th>Feedback Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS-SQ</td>
<td>$\mathcal{O}(M_T M_R)$</td>
<td>$\mathcal{O}(I_{SQ} 2^Q M_T M_R + N_{fb}^2 (M_T + N_{tx}))$</td>
<td>$2Q M_T M_R$</td>
</tr>
<tr>
<td>LS-VQ</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(M_T \log(M_T) + N_{fb}^2 (M_T + N_{tx}))$</td>
<td>$Q (M_T - 1)$</td>
</tr>
<tr>
<td>OMP-SQ</td>
<td>$\mathcal{O}(L M_T M_R)$</td>
<td>$\mathcal{O}(I_{SQ} 2^Q L + L M_R N_{tx} (L + G))$</td>
<td>$\mathcal{O}(L(\log_2 G) + 2Q)$</td>
</tr>
<tr>
<td>OMP-VQ</td>
<td>$\mathcal{O}(L M_T M_R)$</td>
<td>$\mathcal{O}(2^{Q+Q} L + L M_R N_{tx} (L + G))$</td>
<td>$\mathcal{O}(2L + 3)$</td>
</tr>
<tr>
<td>CS</td>
<td>$\mathcal{O}(G(N_{fb} + M_T M_R))$</td>
<td>$N_{fb} M_R N_{tx}$</td>
<td>$2N_{fb}$</td>
</tr>
<tr>
<td>MLE-reg</td>
<td>$\mathcal{O}(G(I_{max} + N_{fb})N_{fb} + M_T M_R))$</td>
<td>$N_{fb} M_R N_{tx}$</td>
<td>$2N_{fb}$</td>
</tr>
<tr>
<td>Hybrid CS</td>
<td>$\mathcal{O}(H(N_{fb} + M_T M_R))$</td>
<td>$\mathcal{O}(N_{fb}, M_R N_{tx} + L M_R N_{tx} (L + G))$</td>
<td>$\mathcal{O}(2N_{fb} + L(\log_2 G))$</td>
</tr>
<tr>
<td>Hybrid MLE-reg</td>
<td>$\mathcal{O}(H(I_{max} + N_{fb})N_{fb} + M_T M_R))$</td>
<td>$\mathcal{O}(N_{fb}, M_R N_{tx} + L M_R N_{tx} (L + G))$</td>
<td>$\mathcal{O}(2N_{fb} + L(\log_2 G))$</td>
</tr>
</tbody>
</table>

![Fig. 10. Downlink sum-capacity as a function of the BS transmit power. The proposed limited feedback along with non-uniform directional dictionaries schemes offer significant sum-capacity performance gains.](image)

This work provided a new limited feedback framework
using dictionary-based sparse channel estimation algorithms
that entail low computational complexity, and thus can be
implemented in real-time. The proposed dictionary accounts
for the antenna directivity pattern and can offer beamforming
and capacity gains while requiring less feedback overhead
compared to uniform dictionaries. Unlike VQ-based schemes
for which the number of feedback bits must grow linearly
with the number of BS antennas to maintain a certain per-
formance level, the number of feedback bits for the proposed
algorithms is under designer control, and they can achieve
better performance using a substantially lower bit budget.

VIII. CONCLUSION AND FUTURE WORK

dominated by lines 4, 7, and 8 in Algorithm 1, which is
$L M_R N_{tx} (L + G))$. Hence, the complexity for OMP-SQ is
$\mathcal{O}(I_{SQ} 2^Q L + L M_R N_{tx} (L + G))$. At the BS, the reconstruc-
tion of the channel matrix for OMP-SQ exploits the sparsity
of channel vector \mathcal{g}, and thus using only the L non-zero
elements of sparse matrix G the channel reconstruction using (8)
requires only $\mathcal{O}(L M_T M_R)$ arithmetic operations. The
complexity of Viterbi algorithm in [13] to quantize the
L non-zero elements estimated by OMP algorithm is
$2^{Q+Q} L + L M_R N_{tx} (L + G)$ arithmetic operations at the UE.
At the BS side, OMP-VQ algorithm reconstructs the non-zero
elements of \mathcal{g} using the feedback bits, with $\mathcal{O}(L)$ computations, whereas to reconstruct
the actual channel using (8) demands $\mathcal{O}(L M_T M_R)$ arithmetic
operations. BS-based limited feedback schemes require
$N_{fb}, M_R N_{tx}$ arithmetic operations at the UE side due to the
multiplication of P^{bf} with y. While hybrid schemes require an
extra $L M_R N_{tx} (L + G)$ computational cost at the UE side due to
the execution of OMP algorithm for support identification.
At the BS side, as shown in Sections V-A and V-B, CS
and MLE-reg algorithms require $\mathcal{O}(G N_{fb})$ and $\mathcal{O}(I_{max} + N_{fb}) G N_{fb}$ computations, respectively, to obtain an estimate
of vector x. In addition, an extra $\mathcal{O}(G M_T M_R)$ computational
cost is required to reconstruct the actual channel through (8).
Finally, hybrid schemes require at the BS, $\mathcal{O}(L N_{fb})$ for CS
and $\mathcal{O}(I_{max} + N_{fb}) L N_{fb}$ for MLE-reg algorithms. Using the
support information obtained from feedback, hybrid schemes
require extra $\mathcal{O}(L M_T M_R)$ calculations to evaluate (8) for
channel reconstruction.
moderate and SNR is high, while in the low-SNR regime the
BS-based (setup 2) and hybrid (setup 3) schemes offer better
performance. The hybrid schemes (setup 3) achieve the best
performance in the massive MIMO regime.

REFERENCES

[3] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with
achievable rates with downlink training and channel state feedback,”
Road to 5G. Elsevier Science, 2016.
CoRR, 2016.
beamforming with flat rate feedback in multiple-antenna systems,”
“QAM and PSK codebooks for limited feedback MIMO beamforming,”
ris coded quantization: A practical limited feedback technique for massive
differential codebook for temporally/spatially correlated MISO channels,”
[17] O. Mennah and N. D. Sidiropoulos, “Channel tracking and trans-
channel sensing: A new approach to estimating sparse multipath chan-
Sayeed, “An overview of signal processing techniques for millimeter
[22] 3GPP TS 36.101 V13.2.1, “Evolved universal terrestrial radio access
(E-UTRA); User Equipment (UE) radio transmission and reception,